• Title/Summary/Keyword: lateral motion

Search Result 796, Processing Time 0.034 seconds

Robotic Lateral Compartment Selective Neck Dissection in Well-Differentiated Thyroid Carcinoma (갑상선 분화암에서 로봇을 이용한 측경부 림프절 절제술)

  • Tae, Kyung
    • Korean Journal of Bronchoesophagology
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2011
  • Robotic thyroidectomy has been developed to minimize neck scarring, and several authors have described its feasibility and safety, and have reported surgical outcomes comparable with conventional open thyroidectomy. The da Vinci surgical system robot provides a three-dimensional $10-12{\times}$magnified view of the surgical area. It also provides hand-tremor filtration, fine motion scaling, and precise and multi-articulated hand-like motions. Recently, robotic technology has also been applied to lateral compartment neck dissection in thyroid cancer. We have developed a new novel selective neck dissection procedure by a gasless unilateral axillo-breast (GUAB) approach with a da Vinci Surgical System for well-differentiated thyroid carcinoma to avoid a long visible neck scar. Based on our early experience, robotic selective neck dissection by GUAB approach is a safe, feasible and cosmetically excellent procedure. It can be an alternative to conventional open surgery in the highly selected patients with well-differentiated thyroid carcinoma. The oncologic safety of robotic selective neck dissection should be verified with long-term follow-up data.

  • PDF

Running Safety of High Speed Freight Bogie (고속주행용 화차 대차의 주행안전성)

  • 이승일;최연선
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.179-186
    • /
    • 2001
  • As the freight traffic becomes heavier, the high speed of existing freight cars is essential instead of the construction of a new railway. The high speed can be achieved by the design modifications of the freight bogie. In this paper, an analytical model of freight bogie including the lateral force between rail and the flange of wheel is developed to decide the critical speed, which activates a hunting motion and tells the running safety of freight bogie. The dynamic responses of the analytical model were compared with an experimental data from a running test of a freight bogie and showed good agreements between them. The analytical model is used to find the design modifications of the freight bogie by parameter studies. The results show that the reduction of wheelset mass ratio and the increase of the axle distance of the freight bogie can increase the critical speed, but the primary lateral stiffness has little effects on the critical speed. And this also study shows that smaller wheel conicity deteriorates the running safety of the freight car, which means the overhauling of the wheel of freight bogie should be done regularly.

  • PDF

Cause and Counterplan of Wheel Climb Derailment at Low Speed on Curves (곡선부 저속주행시 타오르기 탈선의 원인과 대책)

  • Ham, Young-Sam;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1031-1035
    • /
    • 2007
  • When vehicles running, vertical force and lateral force act except load of vehicles to rail and wheel. This force happens by complex motion at running. If mark vertical force by P and lateral force by Q, derailment coefficient displays Q/P, most important indicator pointer of running safety judgment. If Q is grown than P from derailment coefficient, than arrived to derailment because wheel climb or jumps over rail. Wheel climb derailment among kind of derailment is when attack angle is +, wheel and rail strike and flange rides to rail. This derailment occurs much in curved line and occurs in low speed. In this study, occurred when running at low speed on curved line, analyze cause of derailment and presented the countermeasure plan.

  • PDF

Design of Lateral SCAS based on H for Tilt Rotor Aircraft (H 기반 틸트로터 항공기 횡방향 SCAS 설계)

  • Lee, Jangho;Yoo, Changsun;Walker, Daniel J.
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • The tilt rotor aircraft has the flight characteristics which takes off vertically like a helicopter and flies forward like an airplane. Especially, the transition process from a helicopter to an airplane mode requires not only the mixing of control inputs but also the stability and controllability augmentation system(SCAS) in order to keep the safe flight because there are compound flight dynamic characteristics of a helicopter and an airplane including non-linearity, uncertainty. This paper describes the design of SCAS in a lateral motion for the tilt rotor aircraft based on the $H_{\infty}$ control method, which was performed from mathematical model with weighting matrix based on the relationship between the $H_{\infty}$ norm and the sensitivity function. Through simulation analysis for the controller designed on the $H_{\infty}$ control theory, it was shown that this method may be applied to the control design of the tilt rotor aircraft.

  • PDF

A Turnout without Movable Parts for Magnetically Levitated Vehicles with Hybrid Magnets

  • Kakinoki, Toshio;Yamaguchi, Hitoshi;Yoshinaga, Naoya;Mukai, Eiichi;Nishi, Hiroyuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.312-316
    • /
    • 2014
  • This paper describes a turnout without movable parts for magnetically levitated vehicles with hybrid magnets, which have been studied by the authors in place of streetcars. Their low construction cost and low maintenance is key to their practical use. Magnetic levitation systems using forces of attraction can generate guidance force automatically, but the damping force against lateral motion is negligible. However, the lateral damping characteristic was improved by using divided iron type magnets and rails. Using this turnout without movable parts will facilitate smooth direction switching.

THE BASIC DESIGN AND ANALYSIS OF UNMANNED VEHICLE FOR TH TELE-OPERATION CONTROL (원격주행을 위한 무인 자동차에 관한 기본설계와 성능분석에 관한 연구)

  • 심재흥;윤득선;김민석;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.139-139
    • /
    • 2000
  • The subject of this paper is the tole operation for unmanned vehicle. The aim is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. Modern, vehicle related researches have been implemented about control, chassis, body and safe쇼 but now is to driving comfort, I.T.S. and human factor, etc. As a result of this fact, unmanned vehicle is main research topic over the world but it is still very expensive and unreasonable. A hierarchical approach is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. The real time control and monitoring of longitudinal, lateral, Pitching motion is to be solved by system integration and optimization technique. We show the experimental result about fixed brake range test and acceleration test. And all system is to integrated for driving simulator and unmanned vehicle.

  • PDF

A Study on the 3-DOF Attitude Control of Free-Flying Vehicle (자유 비행체의 3자유도 자세제어에 관한 연구)

  • 박덕기;박문수;김병두;정원재;조성민;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.92-92
    • /
    • 2000
  • Helicopter offer the signigicant advantage over traditional air vehicles, in that the provide extended maneuverability, such as vertical climb, hovering, longitudinal and lateral flight, hovering turns and bank turns. But helicopter have the strong cross couplings and nonlinearities for each lateral, longitudinal and rotational motion mutually. However, it is possible to ignore this couplings for the hovering condition, so using this properties we can control the attitude of helicopter. That is, by implementing the dynamic of each rotational axis(roll, pitch, yaw) of independent mutually, 3-DOF(degree of Freedom) attitude control for the helicopter is possible. In this paper, we identify decoupled input-coutput relations of each three rotational axis about the helicopter mounted on the 3-DOF gimbal by experiment, and on these basis implement 3-DOF attitude controller using the PID control method.

  • PDF

A Preview Predictor Driver Model with Fuzzy Logic for the Evaluation of Vehicle Handling Performance (퍼지로직을 기초로한 차량 조종안정성 평가를 위한 예측 운전자 모델)

  • 김호용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.209-219
    • /
    • 1997
  • A fuzzy driver model based on a preview-predictor and yaw rate is developed. The model is used to investigate the handling performance of two wheel steering system(2WS) and four wheel steering system(4WS) vehicles. The two degree-of- freedom model which has yaw and lateral motion predicts the path of the vehicles. Based upon the yaw rate and lateral deviations, the fuzzy engine describes the human driver's complicated control behavior which is adjusted for the driving environment. Both typical single lane change maneuver and double lane change maneuver are adopted to demonstrate the feasibility of fuzzy driver model.

  • PDF

Impedance Control for a Vehicle Platoon System (차량 집단 주행 시스템을 위한 임피던스 제어)

  • Yi, Soo-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.6
    • /
    • pp.295-301
    • /
    • 2001
  • In this paper, an impedance control using a serial chain of spring-damper system is proposed for a vehicle platoon. For safety of the vehicle platoon, it is required to regulated the distance between each vehicle at a preassigned value even in case of vehicle model error, or moise in the measurement signal. Since the spring-damper system is physically stable and widely used to represent the interaction with the uncertain environments, it is appropriate to the longitudinal control of the vehicle platoon. By considering the nonholonomic characteristics of the vehicle motion, the lateral control and the longitudinal control of the vehicle paltoon are unified in the proposed algorithm. Computer simulation is carried out to verify the robustness against the uncertainties such as the vehicle model error and the measurement noise.

  • PDF

A Kinematic Analysis on Piston Rod Mechanism in Swashplate Type Hydraulic Axial Piston Motor/Pump Using Constant Velocity Joint (등속조인트를 적용한 사판식 유압 모터/점프의 로드형 피스톤에 대한 운동해석)

  • Kim K.H.;Kim S.D.;Ham Y.B.;Lee J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, swash plate type hydraulic axial piston motors/pumps are being extensively used in the world, because of simple design, light weight and effective cost. Structural problem of the swash plate type motor/pump is that tilting angle of swash plate should be limited to relatively small value and lateral farce on pistons has an undesirable effect in reciprocating motion. To solve these problems, piston rod mechanism, which is commonly used in bent axis type motor/pump, is considered to be applied to the swash plate type motor/pump. In this paper, kinematic analysis was done on the piston rod mechanism. A series of formula were derived and numerical calculations were done for a set of motor parameters.

  • PDF