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A Turnout without Movable Parts for Magnetically Levitated 

Vehicles with Hybrid Magnets 
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 Eiichi Mukai* and Hiroyuki Nishi* 
 

 

Abstract – This paper describes a turnout without movable parts for magnetically levitated 

vehicles with hybrid magnets, which have been studied by the authors in place of streetcars. 

Their low construction cost and low maintenance is key to their practical use. Magnetic 

levitation systems using forces of attraction can generate guidance force automatically, but 

the damping force against lateral motion is negligible. However, the lateral damping 

characteristic was improved by using divided iron type magnets and rails. Using this turnout 

without movable parts will facilitate smooth direction switching.  
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1. Introduction 

 

 An experimental truck was magnetically levitated using 

dry-cell battery power. The truck had 4 hybrid magnets, 

equipped with divided iron cores in two rows.  

The coils of one side of the divided core were excited 

with a direct current controller to produce polarity 

equivalent to a permanent magnet, while the others were 

excited with the opposite polarity. The magnets control both 

levitation and lateral damping forces.  

The controller was applied to the current integral control 

to reduce excitation loss and the experimental results were 

shown.  

 

 

2. Trial Design 

 

2.1 A Turnout without Movable Parts 

 

An experimental track switching system without 

movable parts for magnetically levitated vehicles was 

established, the outline of which is shown in. Fig .1. A set 

of plane iron slabs as iron rails is located on the upper part 

of the track, while the under surface is mounted on the 

same level as that of the dividing iron rails of the straight 

tracks. The magnetically levitated truck can travel under the 

iron rails and branch out to the selected line. When the 

truck reaches the turnout, the electromagnet for switching is 

excited to branch the selected track. Fig. 2 shows the 

outline of a turnout without movable parts. 

. 

2.2 Magnetically Levitated Vehicle 

 

Fig. 3 shows hybrid magnets [1~ 4], including divided 

iron cores and permanent magnets. Thin and broad 

permanent magnets were placed at the bottom of the 

divided iron cores and arranged in two rows to reduce 

magnetic resistance against the magneto-motive force of 

levitation coils. Moreover, the energy consumption for 

levitation can be significantly reduced by adopting divided 

iron type hybrid magnets [5~ 7].  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig .1 Equipment Outline (Front view). 
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This system operates using AA size dry-cell batteries. The 

application of pull-up type magnetically levitated vehicles 

will be useful for free path track design and smooth running. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Outline of a turnout without movable parts  

(Top view). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Hybrid Magnets. 

 

Table. 1 Equipment Parameters 
Items Units Value 

Residual magnetic flux density of PM T 1.384 

Number of turns per pole  160 

Resistance of a single side coil R  1.2 

Shunt resistance rs 
 

1 

Single side coil inductance L H 0.012 

Number of poles  2 

Mass of truck M (levitated part) Kg 19.3 

Amplitude of triangle voltage EΔ V 5 

Voltage drop of IGBT Ece V 2 

Target current for integral control I0 A 0.1 

 

 

 

Fig. 4 Solid figure of the Equipment. 

 

 
Fig. 5 Equipment (Photo). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Schematic circuit diagram for levitation 
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3. Experiments 

 

Table 1 shows the parameters of the experimental 

equipment. The magnetically levitated part must be cordless 

and the power source must involve ten Ni-MH AA size 

rechargeable batteries connected in series, equating to a 

normal voltage of DC 12V. The battery capacity is 

1900mAh. 

Fig. 4 shows a solid figure of the equipment, which can 

easily be operated using a experimental table under the 

system at Fig. 5. The radius of curvature is 1250 mm. A 

turnout without movable parts is not a divided iron core, 

because that facilitates construction and smooth switching. 

The authors presume the truck runs through a turnout 

without movable parts and at low speed. 

The Magnetically Levitated Vehicle comprises Hybrid 

Magnets and a permanent magnet. The magnetically 

levitated vehicle with hybrid magnets can levitate via both 

large and small air gap lengths. The Hybrid Magnets are 

controlled to maintain the air gap length between the 

Hybrid Magnets and magnetic rail so that the forces of 

attraction from the Hybrid Magnets are balanced out by the 

levitated weight of the vehicle. Each of the Hybrid Magnets 

is independently controlled. 

The target air gap length at steady state levitation is 

10.5mm. At steady state levitation, each hybrid magnet is a 

controlled current at 0.1A due to the balanced mass 

between a levitation part and the force of attraction. The 

total current is 0.4A, but this does not include the power of 

the control circuit.  

Fig. 6 shows a schematic circuit diagram for levitation, 

which operates, when coils A and B have air gaps larger and 

smaller than the target air gap length respectively. Coils A 

and B cannot be operated simultaneously. 

Each hybrid magnet has a rotation axis and can rotate 

along a magnetic rail. 

 

 

4. Experimental Results 

 

A turnout without movable parts consisted of a plane 

with iron slabs and a magnetic rail for changing the orbit. 

Conversely, a liner part of a magnetic rail with divided iron 

cores has a large guidance force that does not run off the 

magnetic rail, making it easy to switch the direction of the 

magnetic levitated part and change the orbit. 

When the air gap length z has a range of   mm, transfer 

for steady state levitation will be possible. No guide force 

was needed to levitate parts run straight above a magnetic 

rail. Conversely, the guide force required to change the 

orbit at turnout without movable parts exceeded 0.2kgf.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Perspective of the equipment (just on the curve). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Perspective of the equipment (on the curve). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Perspective of the equipment (on the straightsection). 
 

The hybrid magnets moved along the magnetic rail on a 

turnout without movable parts automatically 

Fig. 7 shows the perspective of equipment with a view 

solely of the curve rail. The front hybrid magnets passed 

away a max angle of 3.8 degrees of axis and smoothly ran 

along the magnetic rail.  

Fig. 8 shows the perspective of the equipment with a 

view on a curve rail. All hybrid magnets passed away on a 
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turnout without movable parts. The max angle of each of 

the hybrid magnets was 2.5 degrees in terms of the axis on 

the curve rail. 

Fig. 9 shows the perspective of equipment with a view on 

a straight rail. The front hybrid magnets passed away and 

smoothly on a turnout without movable parts. The hybrid 

magnets moved alongside the magnetic rail on a turnout 

without movable parts, with automatic confluence. 
 

 

5. Conclusions 

 

We will construct a cage for changing the weight test and 

also establish and run the same with a linear motor. 

Because the turnout we propose does not involve 

mechanical movement, smooth, ductless and noiseless 

switching is possible. Furthermore, it incorporates a simple 

structure, which can be economically produced. For 

subways and city trains running along the streets, the 

turnout without movable parts for magnetically levitated 

vehicles with hybrid magnets will be optimal. 

The merits of this system will be as follows: 

The hybrid magnets will automatically move alongside 

the magnetic rail on a turnout without movable parts. 

The cost of constructing the vehicle system will be lower 

due to the lack of movable parts.  

Maintenance cost will be reduced due to the lack of 

failure from wear and tear.  

No noise and dust pollution will be generated. 
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