• Title/Summary/Keyword: lateral loading

Search Result 821, Processing Time 0.024 seconds

Damage Behavior of High Strength Reinforced Concrete Columns under Biaxial Lateral Loading (2방향 수평력을 받는 고강도 철근콘크리트 기둥의 파괴거동에 관한연구)

  • 박재영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.411-416
    • /
    • 2000
  • The behavior of high strength reinforced concrete columns subjected to uniaxal reversal loading and biaxial reversal circle path loading was investigated. Four full scale test specimens were tested. All specimens were adopted cantilever type, in order that the critical region is to locate only at the bottom of column. The parameters studied were transverse reinforcement ratio, uniaxial lateral loading and biaxial lateral loading. The damage features of columns by the biaxial loading are different from those of the uniaxial loading, However, the maximum strength and the draft angle at maximum strength were almost the same under uniaxial and biaxial loading. The transverse reinforcement under biaxial loading was very effective for increasing ductility of specimens.

  • PDF

A Study on Prediction of the Coefficient of Horizontal Subgrade Reaction for Pile Using Lateral Pile Loading Test Results (수평재하시험 결과를 이용한 말뚝의 수평방향 지반반력계수 예측에 관한 연구)

  • Chun, Byung-Sik;Seo, Deok-Dong;Lee, Young-Jae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.15-24
    • /
    • 2006
  • In this paper, the Coefficient of Subgrade Reaction was analyzed from the data which were the results of lateral pile loading tests and pressuremeter tests on construction sites. The prediction method with N-value was compared with lateral pile loading tests and the results of lateral pile loading tests were compared with the prediction method considering diameter of a pile. Also, the results of lateral pressuremeter tests were compared with those of lateral pile loading tests. As a result, consideration for a diameter and lateral deformation of a pile was needed when the coefficient of horizontal subgrade reaction is presumed. Therefore, a formula which is taking into account the allowable deformation of a pile was suggested from lateral pressuremeter tests in this study.

  • PDF

Complete collapse test of reinforced concrete columns

  • Abdullah, Abdullah;Takiguchi, Katsuki
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.157-168
    • /
    • 2001
  • In this paper, experimental investigation into the behavior of reinforced concrete (RC) columns tested under large lateral displacement with four different types of loading arrangements is presented. Each loading arrangement has a different system for controlling the consistency of the loading condition. One of the loading arrangements used three units of link mechanism to control the parallelism of the top and bottom stub of column during testing, and the remaining employed eight hydraulic jacks for the same purpose. The loading systems condition used in this investigation were similar to the actual case in a moment-resisting frame where the tested column was displaced in a double curvature. Ten model column specimens, divided into four series were prepared. Two columns were tested monotonically until collapse, and unless failure took place at an earlier stage of loading, the remaining eight columns were tested under cyclic loading. Test results indicated that the proposed system to keep the top and bottom stubs parallel during testing performed well.

A Study on Static Lateral Loading Test for Large Diameter Drilled Shaft Pile Considering the Pile Lead Fixity Conditions (말뚝두부구속조건을 고려한 대구경 현장타설말뚝에 대한 수평정재하시험 연구)

  • Lee, Min-Hee;Hwang, Geun-Bae;Jung, Sung-Min;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.36-43
    • /
    • 2004
  • Most of pile foundations are fixed head condition, but lateral loading test for pile is performed under free head condition generally In this study, a lateral loading test for a large diameter drilled shaft was performed under the fixed pile head and the free pile head condition, where lateral displacement along the pile depth was measure. Test results and theoretical values were compared and analyzed.

  • PDF

Modified model of ultimate concrete compression strain (콘크리트의 극한변형률 수정모델)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.81-84
    • /
    • 2008
  • The purposes of this study are to verify a reasonable model of material characteristic and to propose a rational model of reinforcement characteristic considering monotonic and cyclic loading about manufactured reinforcing steel in Korea. Longitudinal reinforcements of the plastic hinge region were behaved tensile deformation and compressional deformation by direction of lateral loading. However Confinement steels were behaved only tensile deformation by lateral loading. Transverse steels were laid the state of tension in the lateral loading of time, and they were laid state that stress is zero when it was removed lateral load. The tests for cyclic tension loading were performed for test variable as yield strength and reinforcement bar sizes. It was estimated that the total strain energy per unit volume was 74 $MJ/m^3$. The modified ultimate concrete compression strain model was proposed based on experimental study of cyclic tension test for manufactured reinforcing steel in Korea.

  • PDF

Effects of near-fault loading and lateral bracing on the behavior of RBS moment connections

  • Yu, Qi-Song Kent;Uang, Chia-Ming
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.145-158
    • /
    • 2001
  • An experimental study was conducted to evaluate the effects of loading sequence and lateral bracing on the behavior of reduced beam section (RBS) steel moment frame connections. Four full-scale moment connections were cyclically tested-two with a standard loading history and the other two with a near-fault loading history. All specimens reached at least 0.03 radian of plastic rotation without brittle fracture of the beam flange groove welds. Two specimens tested with the nearfault loading protocol reached at least 0.05 radian of plastic rotation, and both experienced smaller buckling amplitudes at comparable drift levels. Energy dissipation capacities were insensitive to the types of loading protocol used. Adding a lateral bracing near the RBS region produced a higher plastic rotation; the strength degradation and buckling amplitude were reduced. A non-linear finite element analysis of a one-and-a-half-bay beam-column subassembly was also conducted to study the system restraint effect. The study showed that the axial restraint of the beam could significantly reduce the strength degradation and buckling amplitude at higher deformation levels.

Numerical Analysis of the Suction Pile Behavior with Different Lateral Loading Locations (수치해석을 통한 횡하중 위치에 따른 석션기초의 거동 분석)

  • Lee, Ju-Hyung;Kim, Dong-Wook;Chung, Moon-Kyung;Kwak, Ki-Seok;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.67-76
    • /
    • 2011
  • Numerical analyses were performed to analyze the behavior of a suction pile under lateral loads with different soil layer conditions (uniform clay layer, uniform sand layer, and multi layers consisting of clay and sand layers) and different loading locations (top, middle, and bottom of the suction pile). The results of the analyses revealed that, regardless of the soil layer conditions, the lateral resistances at the loading location of the middle of the suction pile were the maximum. For the given loading locations, the lateral resistances of the suction pile for the uniform sand layer were relatively higher than those for the multi layer. By analyzing translations and rotations of the suction pile, it was identified that the amount of translation was highly dependent on both the soil layer condition and the lateral loading location while the rotated angle varied significantly with the lateral loading location, but not much with soil layer condition.

Analysis of Loading Translation Behavior for Drilled Shafts Modeling Pile through Lateral Loading Test (현장타설 모형말뚝의 수평재하시험을 통한 하중전이 거동 분석)

  • Park, Jun-Beom;Kim, Hong-Lark;Yoon, Myung-June;Heo, Seong-Jun;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1011-1016
    • /
    • 2009
  • In this study, to performed laboratory model tests in order to verify on load transfer condition of drilled shaft under lateral loading. To conducted model test on polystyle drilled shaft under multi layer ground conditions. In model test, to measured the strain of drilled shaft and displacement under later loading. In order to verify on model test results, to conduct the numerical analysis.

  • PDF

Inelastic lateral-torsional buckling strengths of stepped I-beams subjected to general loading condition

  • Park, Jong Sup;Park, Yi Seul
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.275-289
    • /
    • 2013
  • The cross sections of multi-span beams are sometimes suddenly increased at the interior support of continuous beams to resist high negative moment. An earlier study on elastic lateral torsional buckling of stepped beams was conducted to propose new design equations. This research aims to continue the earlier study by considering the effect of inelastic buckling of stepped beams subjected to pure bending and general loading condition. A three-dimensional finite element-program ABAQUS and a statistical program MINITAB were used in the development of new design equations. The inelastic lateral torsional buckling strengths of 36 and 27 models for singly and doubly stepped beams, respectively, were investigated. The general loading condition consists of 15 loading cases based on the number of inflection point within the unbraced length of the stepped beams. The combined effects of residual stresses and geometrical imperfection were also considered to evaluate the inelastic buckling strengths. The proposed equations in this study will definitely improve current design methods for the inelastic lateral-torsional buckling of stepped beams and will increase efficiency in building and bridge design.

FINITE ELEMENT ANALYSIS OF CYLINDER TYPE IMPLANT PLACED INTO REGENERATED BONE WITH TYPE IV BONE QUALITY (IV형의 골질로 재생된 골내에 식립된 원통형 임플란트의 유한요소법적 연구)

  • Kim, Byung-Ock;Hong, Kug-Sun;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.331-338
    • /
    • 2004
  • Stress transfer to the surrounding tissues is one of the factors involved in the design of dental implants. Unfortunately, insufficient data are available for stress transfer within the regenerated bone surrounding dental implants. The purpose of this study was to investigate the concentration of stresses within the regenerated bone surrounding the implant using three-dimensional finite element stress analysis method. Stress magnitude and contours within the regenerated bone were calculated. The $3.75{\times}10-mm$ implant (3i, USA) was used for this study and was assumed to be 100% osseointegrated, and was placed in mandibular bone and restored with a cast gold crown. Using ANSYS software revision 6.0, a program was written to generate a model simulating a cylindrical block section of the mandible 20 mm in height and 10 mm in diameter. The present study used a fine grid model incorporating elements between 165,148 and 253,604 and nodal points between 31,616 and 48,877. This study was simulated loads of 200N at the central fossa (A), at the outside point of the central fossa with resin filling into screw hole (B), and at the buccal cusp (C), in a vertical and $30^{\circ}$ lateral loading, respectively. The results were as follows; 1. In case the regenerated bone (bone quality type IV) was surrounded by bone quality type I and II, stresses were increased from loading point A to C in vertical loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, concentrated on the top of the cylindrical collar loading point B and C in vertical loading. And, In case the regenerated bone (bone quality type IV) was surrounded by bone quality type III, stresses were increase from loading point A to C in vertical loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, B and C in vertical loading. 2. In case the regenerated bone (bone quality type IV) was surrounded by bone quality type I and II, stresses were decreased from loading point A to C in lateral loading. Stresses according to the depth of regenerated bone were concentrated on the top of the cylindrical collar in loading point A and B, distributed along the implant evenly in loading point C in lateral loading. And, In case the regenerated bone (bone quality type IV) was surrounded by bone quality type III, stresses were decreased from loading point A to C in lateral loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, B and C in lateral loading. In summary, these data indicate that both bone quality surrounding the regenerated bone adjacent to implant fixture and load direction applied on the prosthesis could influence concentration of stress within the regenerated bone surrounding the cylindrical type implant fixture.