• Title/Summary/Keyword: lateral load transfer method

Search Result 30, Processing Time 0.02 seconds

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine Haouari;Ali Bouafia
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions

  • Kim, Garam;Kyung, Doohyun;Park, Donggyu;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.313-328
    • /
    • 2015
  • In the present study, a CPT-based p-y analysis method was proposed for offshore mono-piles embedded in sands. Static and cyclic loading conditions were both taken into account for the proposed method. The continuous soil profiling capability of CPT was an important consideration for the proposed method, where detailed soil profile condition with depth can be readily incorporated into the analysis. The hyperbolic function was adopted to describe the non-linear p-y curves. For the proposed hyperbolic p-y relationship, the ultimate lateral soil resistance $p_u$ was given as a function of the cone resistance, which is directly introduced into the analysis as an input data. For cyclic loading condition, two different cyclic modification factors were considered and compared. Case examples were selected to check the validity of the proposed CPT-based method. Calculated lateral displacements and bending moments from the proposed method were in good agreement with measured results for lateral displacement and bending moment profiles. It was observed the accuracy of calculated results for the conventional approach was largely dependent on the selection of friction angle that is to be adopted into the analysis.

A Study on Determining Complex Young's Modulus of Acoustic Materials (음향 재질의 복소수 모듈러스 추출에 관한 연구)

  • Kim, In-Su;Lee, Hyo-Keun;Kim, Sung-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.30-36
    • /
    • 1991
  • Since the Complex Young's Modulus of acoustic materials is a function of frequency under a static load, a cylindrical specimen modelled by rod-like one with losses is used to determine the dynamic characteristics of materials. The specimen is excited into longitudinal vibration at its one end by shaker and at the other end, loaded by a mass corresponding to the desired static load and thus the transfer function of specimen is measured. This transfer function method is analyzed theoretically and experimentally over a frequency range of 50 Hz to 20 KHz. The analysis includes the measurability of the transfer function, the frequency range of the method and lateral motion effect.

  • PDF

Seismic assessment of transfer plate high rise buildings

  • Su, R.K.L.;Chandler, A.M.;Li, J.H.;Lam, N.T.K.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.287-306
    • /
    • 2002
  • The assessment of structural performance of transfer structures under potential seismic actions is presented. Various seismic assessment methodologies are used, with particular emphasis on the accurate modelling of the higher mode effects and the potential development of a soft storey effect in the mega-columns below the transfer plate (TP) level. Those methods include response spectrum analysis (RSA), manual calculation, pushover analysis (POA) and equivalent static load analysis (ESA). The capabilities and limitations of each method are highlighted. The paper aims, firstly, to determine the appropriate seismic assessment methodology for transfer structures using these different approaches, all of which can be undertaken with the resources generally available in a design office. Secondly, the paper highlights and discusses factors influencing the response behaviour of transfer structures, and finally provides a general indication of their seismic vulnerability. The representative Hong Kong building considered in this paper utilises a structural system with coupled shear walls and moment resisting portal-frames, above and below the TP, respectively. By adopting the wind load profile stipulated in the Code of Practice on Wind Effects: Hong Kong-1983, all the structural members are sized and detailed according to the British Standards BS8110 and the current local practices. The seismic displacement demand for the structure, when built on either rock or deep soil sites, was determined in a companion paper. The lateral load-displacement characteristic of the building, determined herein from manual calculation, has indicated that the poor ductility (brittle nature) of the mega-columns, due mainly to the high level of axial pre-compression as found from the analysis, cannot be effectively alleviated solely by increasing the quantity of confinement stirrups. The interstorey drift demands at lower and upper zones caused by seismic actions are found to be substantially higher than those arising from wind loads. The mega-columns supporting the TP and the coupling beams at higher zones are identified to be the most vulnerable components under seismic actions.

Nonlinear Subgrade Reaction Analysis of the Soil-Pile System for Mooring Dolphin Structures (계류식 돌핀구조물에 대한 지반-말뚝계의 비선형 지반반력 해석)

  • 오세붕;이진학;이상순;김동수;정태영
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.3-16
    • /
    • 1999
  • The objective of BMP( Barge Mounted Plant) project is to construct plants on mooring floating structures at sea. To analyze the pile behavior under mooring dolphins, generally, axial or lateral behavior of soil-pile system is evaluated by using a nonlinear subgrade reaction method which models the pile as a structural element and the soil as series of nonlinear springs along the depth. As a result, load-displacement curves at pile head can be solved by finite difference method and the equivalent stiffness of bottom boundaries of dolphin structure is evaluated. In this study off-shore site investigation was performed on the marine area of Koje Island and axial and lateral load transfer curves of the ground were modeled with depth. The subgrade reaction analysis was performed for piles under axial or lateral loadings, and the required penetration depth and section of the pile were determined. Subsequently, the spring boundaries under the dolphin structure could be modeled from the calculated load-displacement curve and then the dynamic response of the dolphin structure was analyzed reasonably by considering ground conditions. The analysis considering the stiffness of the soil-pile system has resulted in larger displacement amplitudes than those for rigid foundations. Furthermore, moment distributions of the casing were dependent on the soil-pile system so that deformable foundation induces the larger moment of top section of casing and the smaller moment of pile head.

  • PDF

A Study on Analysis of Core-Wall Structure Subjected to Torque (비틀림 하중(荷重)을 받는 심벽구조물(心壁構造物)의 해석(解析)에 관한 연구(研究))

  • Kim, Sung Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.137-144
    • /
    • 1983
  • Core walls for tall building is one of the structures to support lateral load. Since most structural elements used for resisting which ate relatively weak against torsion, it is important to investigate tosional effects in the analysis and design of tall buildings. Rutenberg proposed a more refined theory on the torsional analysis of core walls which can be used when the stiffness of lintel beams are small or large. In this paper a more refined method to analysis the torsion of core wall structures with variable cross sections and being subjected to arbitrarilly distributed load was suggested. To reduce complex and a great number of calculations and to enhance the generality and flexibility of application of this method, the discrete method using transfer matrix formulation was used. Then this method can be easily applied to irregular and variational sections, has no necessity to get particular solution for each of loading conditions, and the maximum size of matrix calculated is $4{\times}4$, which makes this approach more appropriate for design office calculations using comuters of any sizes or even desk calculators.

  • PDF

Proposed Reduction Factor of Cyclic p-y Curves for Drilled Shafts in Weathered Soil (풍화토 지반에 근입된 현장타설말뚝의 Cyclic p-y 곡선의 감소계수 제안)

  • Kim, Byung-Chul;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.47-63
    • /
    • 2015
  • A fundamental study of drilled shafts subjected to lateral cyclic loading in weathered soil was carried out based on field tests and numerical analysis. The emphasis was given on quantifying the cyclic p-y curve function from lateral cyclic loading tests and three-dimensional finite element analysis. Lateral cyclic loading tests and three-dimensional finite element analysis were carried out to investigate the behavior of drilled shafts according to the direction of cyclic loading. Based on the field tests and numerical analysis, a modified lateral load transfer relationship and design chart with degradation factors were proposed by considering the characteristics of cyclic loading. It was found that the prediction by the proposed p-y curve function is in good agreement with the general trends observed by in-situ measurements, and it represents a practical improvement in the prediction of lateral displacement and bending moment distribution of drilled shafts subjected to cyclic loading.

FINITE ELEMENT ANALYSIS OF CYLINDER TYPE IMPLANT PLACED INTO REGENERATED BONE WITH TYPE IV BONE QUALITY (IV형의 골질로 재생된 골내에 식립된 원통형 임플란트의 유한요소법적 연구)

  • Kim, Byung-Ock;Hong, Kug-Sun;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.331-338
    • /
    • 2004
  • Stress transfer to the surrounding tissues is one of the factors involved in the design of dental implants. Unfortunately, insufficient data are available for stress transfer within the regenerated bone surrounding dental implants. The purpose of this study was to investigate the concentration of stresses within the regenerated bone surrounding the implant using three-dimensional finite element stress analysis method. Stress magnitude and contours within the regenerated bone were calculated. The $3.75{\times}10-mm$ implant (3i, USA) was used for this study and was assumed to be 100% osseointegrated, and was placed in mandibular bone and restored with a cast gold crown. Using ANSYS software revision 6.0, a program was written to generate a model simulating a cylindrical block section of the mandible 20 mm in height and 10 mm in diameter. The present study used a fine grid model incorporating elements between 165,148 and 253,604 and nodal points between 31,616 and 48,877. This study was simulated loads of 200N at the central fossa (A), at the outside point of the central fossa with resin filling into screw hole (B), and at the buccal cusp (C), in a vertical and $30^{\circ}$ lateral loading, respectively. The results were as follows; 1. In case the regenerated bone (bone quality type IV) was surrounded by bone quality type I and II, stresses were increased from loading point A to C in vertical loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, concentrated on the top of the cylindrical collar loading point B and C in vertical loading. And, In case the regenerated bone (bone quality type IV) was surrounded by bone quality type III, stresses were increase from loading point A to C in vertical loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, B and C in vertical loading. 2. In case the regenerated bone (bone quality type IV) was surrounded by bone quality type I and II, stresses were decreased from loading point A to C in lateral loading. Stresses according to the depth of regenerated bone were concentrated on the top of the cylindrical collar in loading point A and B, distributed along the implant evenly in loading point C in lateral loading. And, In case the regenerated bone (bone quality type IV) was surrounded by bone quality type III, stresses were decreased from loading point A to C in lateral loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, B and C in lateral loading. In summary, these data indicate that both bone quality surrounding the regenerated bone adjacent to implant fixture and load direction applied on the prosthesis could influence concentration of stress within the regenerated bone surrounding the cylindrical type implant fixture.