• Title/Summary/Keyword: lateral insulated gate bipolar transistor

Search Result 23, Processing Time 0.02 seconds

A New SOl LIGBT Structure with Improved Latch-Up Performance

  • Sung, Woong-Je;Lee, Yong-11;Park, Woo-Beom;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.283-285
    • /
    • 2001
  • In this paper, a new lateral insulated gate bipolar transistor (LIGBT) is proposed to improve the latch-up performance without current path underneath the n+ cathode region. The improvement of latch-up performance is verified using the two-dimensional simulator MEDICI and the simulation results on the latch-up current density are 3.12${\times}$10$\^$-4/ A/$\mu\textrm{m}$ for the proposed LIGBT and 0.94${\times}$10$\^$-4/ A/$\mu\textrm{m}$ for the conventional LIGBT. The proposed SOI LIGBT exhibits 3 times larger latch-up capability than the conventional SOI LIGBT.

  • PDF

A New SOI LIGBT Structure with Improved Latch-Up Performance

  • Sung, Woong-Je;Lee, Yong-Il;Park, Woo-Beom;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.30-32
    • /
    • 2001
  • In this paper, a new silicon-on-insulator (SOI) lateral insulated gate bipolar transistor (LIGBT) is proposed to improve the latch-up performance without current path underneath the n$^{+}$ cathode region. The improvement of latch-up performance is verified using the two- dimensional simulator MEDICI and the simulation results on the latch-up current density are 4468 A/cm2 for the proposed LIGBT and 1343 A/$\textrm{cm}^2$ for the conventional LIGBT. The proposed SOI LIGBT exhibits 3 times larger latch-up capability than the conventional SOI LIGBT.T.

  • PDF

A Study on SCR-Based ESD Protection Circuit with PMOS (PMOS가 삽입된 SCR 기반의 ESD 보호 회로에 관한 연구)

  • Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1309-1313
    • /
    • 2019
  • In this paper, the electrical characteristics of Gate grounded NMOS(GGNMOS), Lateral insulated gate bipolar transistor(LIGBT), Silicon Controlled Rectifier(SCR), and Proposed ESD protection device were compared and analyzed. First, the trigger voltage and holding voltage were verified by simulating the I-V characteristic curve for each device. After that, the robustness was confirmed by HBM 4k simulation for each device. As a result of HBM 4k simulation, the maximum temperature of the proposed ESD protection device is lower than that of GGNMOS and GGLIGBT and SCR, which means that the robustness is improved, which means that the ESD protection device is excellent in terms of reliability.

A Study on the Forward I-V Characteristics of the Separated Shorted-Anode Lateral Insulated Gate Bipolar Transistor (분리된 단락 애노드를 이용한 수평형 SA-LIGBT 의 순방향 전류-전압 특성 연구)

  • Byeon, Dae-Seok;Chun, Jeong-Hun;Lee, Byeong-Hun;Kim, Du-Yeong;Han, Min-Ku;Choi, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.161-166
    • /
    • 1999
  • We investigate the device characteristics of the separated shorted-anode LIGBT (SSA-LIGBT), which suppresses effectively the negative differential resistance regime, by 2-dimensional numerical simulation. The SSA-LIGBT increases the pinch resistance by employing the highly resistive n-drift region as an electron conduction path instead of the lowly resistive n buffer region of the conventional SA-LIGBT. The negative differential resistance regime of the SSA-LIGBT is significantly suppressed as compared with that of the conventional SA-LIGBT. The SSA-LIGBT shows the lower forward voltage drop than that of the conventional SA-LIGBT.

  • PDF

Study on New LIGBT with Multi Gate for High Speed and Improving Latch up Effect (래치 업 특성의 개선과 고속 스위칭 특성을 위한 다중 게이트 구조의 새로운 LIGBT)

  • 강이구;성만영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.371-375
    • /
    • 2000
  • In this paper a new conductivity modulated power transistor called the Lateral Insulated Gated Bipolar Transistor which included n+ ring and p-channel gate is presented. A new lateral IGBT structure is proposed to suppress latch-up and to improve turn off time by imploying n+ ring and p-channel gate and verified by MEDICI. The simulated I-V characteristics at $V_{G}$=15V show that the latch up occurs at $V_{A}$=18V and 6.9$\times$10$^{-5}$ A/${\mu}{\textrm}{m}$ for the proposed LIGBT while the conventional LIGBT latches at $V_{A}$=1.3V and 1.96${\mu}{\textrm}{m}$10$^{-5A}$${\mu}{\textrm}{m}$. It is shown that turn off characteristic of new LIGBT is 8 times than that of conventional LIGBT. And noble LIGBT is not n+ buffer layer because that It includes p channel gate and n+ ring. Therefore Mask for the buffer layer isn’t needed. The concentration of n+ ring is and the numbers of n+ ring and p channel gate are three for the optimal design.n.n.n.n.

  • PDF

Simulation of a Novel Lateral Trench Electrode IGBT with Improved Latch-up and Forward Blocking Characteristics

  • Kang, Ey-Goo;Moon, Seung-Hyun;Kim, Sangsig;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • A new small sized Lateral Trench electrode Insulated Gate Bipolar Transistor(LTEIGBT) was proposed to improve the characteristics of conventional Lateral IGBT (LIGBT) and Lateral Trench gate IGBT (LTIGBT). The entire electrode of LTEIGBT was replace with trench-type electrode. The LTEIGBT was designed so that the width of device was no more than 19 ㎛. The Latch-up current densities of LIGBT, LTIGBT and the proposed LTEIGBT were 120A/㎠, 540A/㎠, and 1230A/㎠, respectively. The enhanced latch-up capability of the LTEIGBT was obtained through holes in the current directly reaching the cathode via the p+ cathode layer underneath n+ cathode layer. The forward blocking voltage of the LTEIGBT is 130V. Conventional LIGBT and LTIGBT of the same size were no more than 60V and 100V, respectively. Because the the proposed device was constructed of trench-type electrodes, the electric field moved toward trench-oxide layer, and punch through breakdown of LTEIGBT is occurred, lately.

  • PDF

Numerical Analyses on Snapback-Free Shorted-Anode SOI LIGBT by using a Floating Electrode and an Auxiliary Gate (플로우팅 전극과 보조 게이트를 이용하여 스냅백을 없앤 애노드 단락 SOI LIGBT의 수치 해석)

  • O, Jae-Geun;Kim, Du-Yeong;Han, Min-Gu;Choe, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.73-77
    • /
    • 2000
  • A dual-gate SOI SA-LIGBT (shorted-anode lateral insulated gate bipolar transistor) which eliminates the snapback effectively is proposed and verified by numerical simulation. The elimination of the snapback in I-V characteristics is obtained by initiating the hole injection at low anode voltage by employing a dual gate and a floating electrode in the proposed device. For the proposed device, the snapback phenomenon is completely eliminate, while snapback of conventional SA-LIGBT occurs at anode voltage of 11 V. Also, the drive signals of two gates have same polarity by employing the floating electrode, thereby requiring no additional power supply.

  • PDF

The modified HSINFET using the trenched hybrid injector (트렌치 구조의 Hybrid Schottky 인젝터를 갖는 SINFET)

  • 김재형;김한수;한민구;최연익
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.230-234
    • /
    • 1996
  • A new trenched Hybrid Schottky INjection Field Effect Transistor (HSINFET) is proposed and verified by 2-D semiconductor device simulation. The feature of the proposed structure is that the hybrid Schottky injector is implemented at the trench sidewall and p-n junction injector at the upper sidewall and bottom of a trench. Two-dimensional simulation has been performed to compare the new HSINFET with the SINFET, conventional HSINFET and lateral insulated gate bipolar transistor(LIGBT). The numerical results shows that the current handling capability of the proposed HSINFET is significantly increased without sacrificing turn-off characteristics. The proposed HSINFET exhibits higher latch-up current density and much faster switching speed than the lateral IGBT. The forward voltage drop of the proposed HSINFET is 0.4 V lower than that of the conventional HSINFET and the turn-off time of the trenched HSINFET is much smaller than that of LIGBT.

  • PDF

A New Snap-back Suppressed SA-LIGBT with Gradual Hole Injection (점진적인 홀의 주입을 통해 스냅백을 억제한 새로운 구조의 SA-LIGBT)

  • Jeon, Jeong-Hun;Lee, Byeong-Hun;Byeon, Dae-Seok;Lee, Won-O;Han, Min-Gu;Choe, Yeol-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.113-115
    • /
    • 2000
  • The gradual hole injection LIGBT (GI-LIGBT) which employs the dual gate and the p+ injector, was fabricated for eliminating a negative resistance regime and reducing a forward voltage drop in SA-LIGBT. The elimination of the negative resistance regime is successfully achieved by initiating the hole injection gradually. Furthermore, the experimental results show that the forward voltage drop of GI-LIGBT decreases by lV at the current density of 200 $A/cm^2$, when compared with that of the conventional SA-LIGBT. It is also found that the improvement in the on-state characteristics can be obtained without sacrificing the inherent fast switching characteristics of SA-LIGBT.

  • PDF

A Novel Lateral Trench Electrode IGBT for Suprior Electrical Characteristics (인텔리전트 파워 IC의 구현을 위한 횡형 트렌치 전극형 IGBT의 제작 및 그 전기적 특성에 관한 연구)

  • 강이구;오대석;김대원;김대종;성만영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.758-763
    • /
    • 2002
  • A new small size Lateral Trench Electrode Insulated Gate Bipolar Transistor (LTEIGBT) is proposed and fabricated to improve the characteristics of device. The entire electrode of LTEIGBT is placed to trench type electrode. The LTEIGBT is designed so that the width of device is 19w. The latch-up current density of the proposed LTEIGBT is improved by 10 and 2 times with those of the conventional LIGBT and LTIGBT. The forward blocking voltage of the LTEIGBT is 130V. At the same size, those of conventional LIGBT and TIGBT are 60V and 100V, respectively. Because the electrodes of the proposed device is formed of trench type, the electric field in the device are crowded to trench oxide. When the gate voltage is applied 12V, the forward conduction currents of the proposed LTEIGBT and the conventional LIGBT are 80mA and 70mA, respectively, at the same breakdown voltage of 150V.