• 제목/요약/키워드: lateral friction

검색결과 215건 처리시간 0.024초

족관절 화농성 관절염이 동반된 난치성 외과 점액낭염의 음압 창상치료: 증례 보고 (Negative-Pressure Wound Therapy for Septic Ankle Arthritis Following Intractable Lateral Malleolar Bursitis: A Case Report)

  • 김지연;장지훈;정소학
    • 대한족부족관절학회지
    • /
    • 제25권4호
    • /
    • pp.190-194
    • /
    • 2021
  • A bursa is an obstructive sac filled with synovial fluid and usually occurs in any area of the body exposed to friction. The bursa of the ankle is not a normal anatomical structure and is caused by repetitive trauma, constant friction, or inflammatory disease of the ankle. Bursitis can occur in any bursa in the human body; however it rarely progresses to septic arthritis. We report a rare case of septic ankle arthritis following intractable lateral malleolar bursitis successfully treated with negative-pressure wound therapy.

캐비테이션을 고려한 스풀밸브 해석에서 Navier-Stokes 방정식과 Reynolds 방정식에 의한 비교 연구 (Comparative Study of the Navier-Stokes Equation & the Reynolds Equation in Spool Valve Analysis Considering Cavitation)

  • 홍성호;손상익;김경웅
    • Tribology and Lubricants
    • /
    • 제29권5호
    • /
    • pp.275-285
    • /
    • 2013
  • The Reynolds equation is commonly used to investigate the lubrication characteristics of a spool valve. However, the applicability of the Reynolds equation is questionable for analyzing a spool valve because cavitation often occurs in the grooves of the valve and the depth of a groove is much higher than the clearance in most cases. In this study, the validity of the Reynolds equation in the spool valve analysis is investigated by comparing the results obtained from the Reynolds equation and those obtained from the Navier-Stokes equation. The results are compared in terms of the lateral forces, friction forces, and volume flow rates (leakages). A significant difference of more than 20% is found in the lateral forces in cases where cavitation occurs and there are many grooves. Therefore, the Navier-Stokes equation should be used to investigate the lubrication characteristics of a spool valve when cavitation occurs and when the spool valve contains many grooves.

Estimation of lateral pile resistance incorporating soil arching in pile-stabilized slopes

  • Neeraj, C.R.;Thiyyakkandi, Sudheesh
    • Geomechanics and Engineering
    • /
    • 제23권5호
    • /
    • pp.481-491
    • /
    • 2020
  • Piles installed in row(s) are used as an effective technique to improve the stability of soil slopes. The analysis of pile-stabilized slopes require a reliable prediction of lateral resistance offered by the piles. In this work, an analytical solution is developed to estimate the lateral resistance offered by the stabilizing piles in sand and c - 𝜙 soil slopes considering soil arching phenomenon. The soil arching in both horizontal direction (between the neighboring piles) and vertical direction (in the active wedge in front of the pile row) are studied and their effects are incorporated in the proposed model. The shape of soil arch is assumed to be circular and principal stress trajectories are defined separately for both modes of arching. Experimental and numerical studies found in literature were used to validate the proposed method. A detailed parametric analysis was performed to study the influence of pile diameter, center-to-center spacing, slope angle and angle of internal friction on the lateral pile resistance.

Static and seismic active lateral earth pressure coefficients for c-ϕ soils

  • Keshavarz, Amin;Pooresmaeil, Zahra
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.657-676
    • /
    • 2016
  • In this paper, the active lateral earth pressure is evaluated using the stress characteristics or slip line method. The lateral earth pressure is expressed as the lateral earth pressure coefficients due to the surcharge, the unit weight and cohesion of the backfill soil. Seismic horizontal and vertical pseudo-static coefficients are used to consider the seismic effects. The equilibrium equations along the characteristics lines are solved by the finite difference method. The slope of the ground surface, the wall angle and the adhesion and friction angle of the soil-wall interface are also considered in the analysis. A computer code is provided for the analysis. The code is capable of solving the characteristics network, determining active lateral earth pressure distribution and calculating active lateral earth pressure coefficients. Closed-form solutions are provided for the lateral earth pressure coefficients due to the surcharge and cohesion. The results of this study have a good agreement with other reported results. The effects of the geometry of the retaining wall, the soil and soil-wall interface parameters are evaluated. Non-dimensional graphs are presented for the active lateral earth pressure coefficients.

2차원 마찰모델을 이용한 구면무단변속기의 변속특성해석 (Analysis on the Shift Characteristics of Semi-Spherical CVT using 2-dimensional Friction Model)

  • 공진형;임원식;박영일;김정윤
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.103-109
    • /
    • 2008
  • Semi-spherical CVT(SS-CVT) is one of friction drives, which transmits power via the friction force between a spherical shaped variator and output disks. The variator varies the speed ratio of SS-CVT continuously as well as transmits input power into the output shaft. Therefore two friction forces are normally applied on the variator; one is the longitudinal friction force for power transmission and the other is the lateral for shifting. In order to investigate the dynamic behavior of SS-CVT, we introduced a numerical model of 2-dimensional friction force using a function of slip ratio and slip angle. And a dynamic model, which describes the shifting mechanism of SS-CVT, is developed through 3-dimensional vector analysis. Finally we presented numerical results of the shift characteristics focused on the transient behavior of the variator's slip ratio and slip angle. The numerical results also show the typical CVT shifting characteristics of SS-CVT and stable shifting behaviors of the variator.

Using friction dampers in retrofitting a steel structure with masonry infill panels

  • Zahrai, Seyed Mehdi;Moradi, Alireza;Moradi, Mohammadreza
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.309-325
    • /
    • 2015
  • A convenient procedure for seismic retrofit of existing buildings is to use passive control methods, like using friction dampers in steel frames with bracing systems. In this method, reduction of seismic demand and increase of ductility generally improve seismic performance of the structures. Some of its advantages are development of a stable rectangular hysteresis loop and independence on environmental conditions such as temperature and loading rate. In addition to friction dampers, masonry-infill panels improve the seismic resistance of steel structures by increasing lateral strength and stiffness and reducing story drifts. In this study, the effect of masonry-infill panels on seismic performance of a three-span four-story steel frame with Pall friction dampers is investigated. The results show that friction dampers in the steel frame increase the ductility and decrease the drift (to less than 1%). The infill panels fulfill their function during the imposed drift and increase structural strength. It can be concluded that infill panels together with friction dampers, reduced structural dynamic response. These infill panels dissipated input earthquake energy from 4% to 10%, depending on their thickness.

Bearing capacity of footing supported by geogrid encased stone columns on soft soil

  • Demir, Ahmet;Sarici, Talha
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.417-439
    • /
    • 2017
  • The stone columns are increasingly being used as a soil improvement method for supporting a wide variety of structures (such as road embankment, buildings, storage tanks etc.) especially built on soft soil. Soil improvement by the stone column method overcomes the settlement problem and low stability. Nevertheless, stone column in very soft soils may not be functional due to insufficient lateral confinement. The required lateral confinement can be overcome by encasing the stone column with a suitable geosynthetic. Encasement of stone columns with geogrid is one of the ideal forms of improving the performance of stone columns. This paper presents the results of a series of experimental tests and numerical analysis to investigate the behavior of stone columns with and without geogrid encasement in soft clay deposits. A total of six small scale laboratory tests were carried out using circular footing with diameters of 0.05 m and 0.1 m. In addition, a well-known available software program called PLAXIS was used to numerical analysis, which was validated by the experimental tests. After good validation, detailed of parametric studies were performed. Different parameters such as bearing capacity of stone columns with and without geogrid encasement, stiffness of geogrid encasement, depth of encasement from ground level, diameter of stone columns, internal friction angle of crushed stone and lateral bulging of stone columns were analyzed. As a result of this study, stone column method can be used in the improvement of soft ground and clear development in the bearing capacity of the stone column occurs due to geogrid encasement. Moreover, the bearing capacity is effected from the diameter of the stone column, the angle of internal friction, rigidity of the encasement, and depth of encasement. Lateral bulging is minimized by geogrid encasement and effected from geogrid rigidity, depth of encasement and diameter of the stone column.

손끝 움직임 인식과 질감 표현이 가능한 촉각정보 입출력장치 (Tactile Transceiver for Fingertip Motion Recognition and Texture Generation)

  • 윤세찬;조영호
    • 대한기계학회논문집B
    • /
    • 제37권6호
    • /
    • pp.545-550
    • /
    • 2013
  • 본 논문은 정전기력을 이용한 마찰력 변조를 이용하여 손끝을 통한 촉각정보의 입출력을 동시 구현하는 소자를 제안하였다. 기존의 촉각소자들이 촉각정보의 입력 및 출력을 개별적으로 구현한 것에 비해 본 연구는 손끝의 수직/수평 방향 동작 인식과 질감 구현을 동시에 구현하였다는 점에서 차별성을 가진다. 실험분석을 통해 검증한 손끝 동작 인식기능은 수직방향의 클릭의 경우 0.146nF/$40{\mu}m$, 수평방향의 경우 0.09nF/$750{\mu}m$의 정전용량 변화를 통해 인식 가능하였으며, 질감 구현의 경우 정전기적 인력을 통해 마찰력을 32~152mN의 범위에서 제어할 수 있음을 확인하였다. 교류전압을 이용한 수평적 진동은 60V, 3Hz에서 최대 128.1mN의 마찰력 변조를 구현하였으며, 이는 기존 연구 대비 32% 향상을 보여준다. 본 연구는 손끝에서 정보의 입출력을 동시 구현하여 정보기기의 촉각인터페이스에 적용 가능하다.

기준 외팔보를 이용한 액체 환경에서 Colloidal Probe의 수평방향 힘 교정 (Lateral Force Calibration of Colloidal Probe in Liquid Environment Using Reference Cantilever)

  • 제영완;정구현
    • Tribology and Lubricants
    • /
    • 제29권3호
    • /
    • pp.160-166
    • /
    • 2013
  • There is an indispensable need for force calibration for quantitative nanoscale force measurement using atomic force microscopy. Calibrating the normal force is relatively straightforward, whereas doing so for the lateral force is often complicated because of the difficulty in determining the optical lever sensitivity. In particular, the lateral force calibration of a colloidal probe in a liquid environment often has a larger uncertainty as a result of the effects of the epoxy, the location of the colloidal particle on the cantilever, and a decrease in the quality factor. In this work, the lateral force of a colloidal probe using a reference cantilever with a known spring constant was calibrated in a liquid environment. By obtaining the spring constant and the lateral sensitivity at the equator of a spherical colloidal particle, the damage to the bottom surface of the colloidal particle could be eliminated. Further, it was shown that the effect of the contact stiffness on the determination of the lateral spring constant of the cantilever could be minimized. It was concluded that this method can be effectively used for the lateral force calibration of a colloidal probe in a liquid environment.

$DDPO_4$$ODPO_4$SAM 코팅의 나노 응착 및 마찰 특성 연구 (Nano Adhesion and Friction of $DDPO_4$ and $ODPO_4$ SAM Coatings)

  • 윤의성;양승호;공호성
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.267-272
    • /
    • 2002
  • Nano adhesion between SPM(scanning probe microscope) tips and DDPO$_4$(octadecylphosphoric acid ester.) and ODPO$_4$(octadecylphosphoric acid ester) SAM(self-assembled monolayer.) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes with the applied normal load. DDPO$_4$ and ODPO$_4$ SAM were formed on Ti and TiOx surfaces. Ti and TiOx were coated on the Si wafer by ion sputtering. Adhesion and friction of DDPO$_4$ and ODPO$_4$ SAM surfaces were compared with those of OTS(octadecyltrichlorosilane) SAM and DLC surfaces. DDPO$_4$ and ODPO$_4$ SAM converted the Ti and TiOx surfaces to be hydrophobic. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare surfaces. Work of adhesion was also discussed to explain how the surface was converted into hydrophobic Results also showed that tribological characteristics of DDPO$_4$ and ODPO$_4$ SAM had good properties in the adhesion, friction, wetting angle and work of adhesion. DDPO$_4$ and ODPO$_4$ SAM could be one of the candidates for the bio-MEMS elements.