Browse > Article
http://dx.doi.org/10.12989/gae.2020.23.5.481

Estimation of lateral pile resistance incorporating soil arching in pile-stabilized slopes  

Neeraj, C.R. (Department of Civil Engineering, Indian Institute of Technology Palakkad)
Thiyyakkandi, Sudheesh (Department of Civil Engineering, Indian Institute of Technology Palakkad)
Publication Information
Geomechanics and Engineering / v.23, no.5, 2020 , pp. 481-491 More about this Journal
Abstract
Piles installed in row(s) are used as an effective technique to improve the stability of soil slopes. The analysis of pile-stabilized slopes require a reliable prediction of lateral resistance offered by the piles. In this work, an analytical solution is developed to estimate the lateral resistance offered by the stabilizing piles in sand and c - 𝜙 soil slopes considering soil arching phenomenon. The soil arching in both horizontal direction (between the neighboring piles) and vertical direction (in the active wedge in front of the pile row) are studied and their effects are incorporated in the proposed model. The shape of soil arch is assumed to be circular and principal stress trajectories are defined separately for both modes of arching. Experimental and numerical studies found in literature were used to validate the proposed method. A detailed parametric analysis was performed to study the influence of pile diameter, center-to-center spacing, slope angle and angle of internal friction on the lateral pile resistance.
Keywords
pile-stabilized slopes; soil arching; lateral pile resistance; c - ${\phi}$ soil; slope angle;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Lee, I.M., Kim, D.H., Kim, K.Y. and Lee, S.W. (2016), "Earth pressure on a vertical shaft considering the arching effect in �� -�� soil", Geomech. Eng., 11(6), 879-896. https://doi.org/10.12989/gae.2016.11.6.879.   DOI
2 Li, J.P. and Wang, M. (2014), "Simplified method for calculating active earth pressure on rigid retaining walls considering the arching effect under translational mode", Int. J. Geomech., 14(2), 282-290. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000313.   DOI
3 Li, X. and Wei, S. (2018), "A calculation method for the distribution of lateral force acting on stabilizing piles considering soil arching effect", Indian Geotech. J., 49(1), 132-139. https://doi.org/10.1007/s40098-018-0307-5.   DOI
4 Liang, R. and Zeng, S. (2002), "Numerical study of soil arching mechanism in drilled shafts for slope stabilization", Soils Found., 42(2), 83-92. https://doi.org/10.3208/sandf.42.2_3.   DOI
5 Liang, R.Y., Joorabchi, A.E. and Li, L. (2014), "Analysis and design method for slope stabilization using a row of drilled shafts", J. Geotech. Geoenviron. Eng., 140(5), 04014001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001070.   DOI
6 Lirer, S. (2012), "Landslide stabilizing piles: Experimental evidences and numerical interpretation", Eng. Geol., 149-150, 70-77. https://doi.org/10.1016/j.enggeo.2012.08.002.   DOI
7 Moradi, G. and Abbasnejad, A. (2015), "Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb", Geomech. Eng., 8(6), 829-844. http://doi.org/10.12989/gae.2015.8.6.829.   DOI
8 Norris, G. (1986), "Theoretically based BEF laterally loaded pile analysis", Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Nantes, France, May.
9 Paik, K. and Salgado, R. (2003), "Estimation of active earth pressure against rigid retaining walls considering arching effects", Geotechnique, 53(7), 643-654. https://doi.org/10.1680/geot.2003.53.7.643.   DOI
10 Poulos, H.G. (1995), "Design of reinforcing piles to increase slope stability", Can. Geotech. J., 32(5), 808-818. https://doi.org/10.1139/t95-078.   DOI
11 Rao, P., Chen, Q., Zhou, Y., Nimbalkar, S. and Chiaro, G. (2016), "Determination of active earth pressure on rigid retaining wall considering arching effect in cohesive backfill soil", Int. J. Geomech., 16(3), 04015082. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000589.   DOI
12 Saseendran, R. and Dodagoudar, G. (2020), "Reliability analysis of slopes stabilised with piles using response surface method", Geomech. Eng., 21(6), 513-525. http://doi.org/10.12989/gae.2020.21.6.513.   DOI
13 Smethurst, J. and Powrie, W. (2007), "Monitoring and analysis of the bending behavior of discrete piles used to stabilise a railway embankment", Geotechnique, 57(8), 663-677. https://doi.org/10.1680/geot.2007.57.8.663.   DOI
14 Won, J., You, K., Jeong, S. and Kim, S. (2005), "Coupled effects in stability analysis of pile-slope systems", Comput. Geotech., 32(4), 304-315. https://doi.org/10.1016/j.compgeo.2005.02.006.   DOI
15 Song, Y.S., Hong, W.P. and Woo, K.S. (2012), "Behavior and analysis of stabilizing piles installed in a cut slope during heavy rainfall", Eng. Geol., 129-130, 56-67. https://doi.org/10.1016/j.enggeo.2012.01.012.   DOI
16 Viggiani, C. (1981), "Ultimate lateral load on piles used to stabilize landslides", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, June.
17 Wang, L., Leshchinsky, B., Evans, T.M. and Xie, Y. (2017), "Active and passive arching stresses in �� - �� soils: A sensitivity study using computational limit analysis", Comput. Geotech., 84, 47-57. https://doi.org/10.1016/j.compgeo.2016.11.016.   DOI
18 Ashour, M. and Hamed, A. (2012), "Analysis of pile stabilized slopes based on soil-pile interaction", Comput. Geotech., 39, 85-97. https://doi.org/10.1016/j.compgeo.2011.09.001.   DOI
19 Ausilio, E., Conte, E. and Dente, G. (2001), "Stability analysis of slopes reinforced with piles", Comput. Geotech., 28(8), 591-611. https://doi.org/10.1016/S0266-352X(01)00013-1.   DOI
20 Bosscher, P.J. and Gray, D.H. (1986), "Soil arching in sandy slopes", J. Geotech. Eng., 112(6), 626-645. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:6(626).   DOI
21 He, Y., Hemanta, H., Noriyuki, Y. and Zheng, H. (2015a), "Evaluating the effect of slope angle on the distribution of the soil-pile pressure acting on stabilizing piles in sandy slopes", Comput. Geotech., 69, 153-165. http://doi.org/10.1016/j.compgeo.2015.05.006.   DOI
22 Ho, I.H. (2015), "Numerical study of slope-stabilizing piles in undrained clayey slopes with a weak thin layer", Int. J. Geomech., 15(5), 06014025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000445.   DOI
23 Galli, A. and Di Prisco, C. (2013), "Displacement-based design procedure for slope-stabilizing piles", Can. Geotech. J., 50(1), 41-53. https://doi.org/10.1139/cgj-2012-0104.   DOI
24 Broms, B.B. (1964), "Lateral resistance of piles in cohesive soils", J. Soil Mech. Found. Div., 90(2), 27-63.   DOI
25 Handy, R.L. (1985), "The arch in soil arching", J. Geotech. Eng., 111(3), 302-318. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(302).   DOI
26 Harrop-Williams, K. (1989), "Arch in soil arching", J. Geotech. Eng., 115(3), 415-419. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:3(415).   DOI
27 Hassiotis, S., Chameau, J. and Gunaratne, M. (1997), "Design method for stabilization of slopes with piles", J. Geotech. Geoenviron. Eng., 123(4), 314-323. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(314).   DOI
28 He, Y., Hazarika, H., Yasufuku, N., Teng, J., Jiang, Z. and Han, Z. (2015b), "Estimation of lateral force acting on piles to stabilize landslides", Nat. Hazards, 79(3), 1981-2003. https://doi.org/10.1007/s11069-015-1942-0.   DOI
29 Hewlett, W.J. and Randolph, M.F. (1988), "Analysis of piled embankments", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25(6), 297-298.
30 Ito, T. and Matsui, T. (1975), "Methods to estimate lateral force acting on stabilizing piles", Soils Found., 15(4), 43-59. https://doi.org/10.3208/sandf1972.15.443.   DOI
31 Adachi, T., Kimura, M. and Tada, S. (1989), "Analysis on the preventive mechanism of landslide stabilizing piles", Proceedings of the 3rd International Symposium on Numerical Models in Geomechanics, Niagara Falls, Canada, May.
32 Cai, F. and Keizo, U. (2000), "Numerical analysis of the stability of a slope reinforced with piles", Soils Found., 40(1), 73-84. https://doi.org/10.3208/sandf.40.73.   DOI
33 Chen, C. and Martin, G.R. (2002), "Soil-structure interaction for landslide stabilizing piles", Comput. Geotech., 29(5), 363-386. https://doi.org/10.1016/S0266-352X(01)00035-0.   DOI
34 De Beer, E.E. and Wallays, M. (1970), "Stabilization of a slope in schists by means of bored piles reinforced with steel beams", Proceedings of the International Society of Rock Mechanics, Lisbon, Portugal, May.
35 Ardalan, H. and Mohamed, A. (2013), "Analysis of landslides and slopes stabilized using one row of piles", Research Report No: ATP 4/13/12, Deep Foundation Institute (DFI) and University of Alabama, Huntsville, Alabama, U.S.A.
36 Deng, B. and Yang, M. (2019), "Bearing capacity analysis of pilestabilized slopes under steady unsaturated flow conditions", Int. J. Geomech., 19(12), 04019129. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001509.   DOI
37 Ito, T., Matsui, T. and Hong, W.P. (1981), "Design method for stabilizing piles against landslide: One row of piles", Soils Found., 21(1), 21-37. https://doi.org/10.3208/sandf1972.21.21.   DOI
38 Di Laora, R., Maiorano, M.S. and Aversa, S. (2017), "Ultimate lateral load of slope-stabilizing piles", Geotechnique Lett., 7(3), 237-244. https://doi.org/10.1680/jgele.17.00038.   DOI
39 Durrani, I.K., Ellis, E.A. and Reddish, D.J. (2006), "Modelling lateral pile-soil interaction for a row of piles in a frictional soil", Proceedings of the 4th International FLAC Symposium on Numerical Modelling in Geomechanics, Madrid, Spain, May.
40 Ellis, E., Durrani, I.K. and Reddish, D.J. (2010), "Numerical modelling of discrete pile rows for slope stability and generic guidance for design", Geotechnique, 60(3), 185-195. https://doi.org/10.1680/geot.7.00090.   DOI
41 Jaouhar, E.M., Li, L. and Aubertin, M. (2018), "An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution", Geomech. Eng., 15(3), 889-898. https://doi.org/10.12989/gae.2018.15.3.889.   DOI
42 Jeong, S., Kim, B., Won, J. and Lee, J. (2003), "Uncoupled analysis of stabilizing piles in weathered slopes", Comput. Geotech., 30(8), 671-682. https://doi.org/10.1016/j.compgeo.2003.07.002.   DOI
43 Kellogg, C. and Quinlan, J. (1987), "The arch in soil arching. discussion", J. Geotech. Eng., 113(3), 269-271. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:3(269).   DOI
44 Khosravi, M., Bahaaddini, M., Kargar, A. and Pipatpongsa, T. (2018), "Soil arching behind retaining walls under active translation mode: Review and new insights", Int. J. Min. GeoEng., 52(2), 131-140. https://doi.org/10.22059/ijmge.2018.264011.594754.   DOI
45 Kourkoulis, R., Gelagoti, F., Anastasopoulos, I. and Gazetas, G. (2011a), "Hybrid method for analysis and design of slope stabilizing piles", J. Geotech. Geoenviron. Eng., 138(1), 1-14. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000546.   DOI
46 Kourkoulis, R., Gelagoti, F., Anastasopoulos, I. and Gazetas, G. (2011b), "Slope stabilizing piles and pile-groups: parametric study and design insights", J. Geotech. Geoenviron. Eng., 137(7), 663-677. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000479.   DOI
47 Lee, C., Hull, T. and Poulos, H. (1995), "Simplified pile-slope stability analysis", Comput. Geotech., 17(1), 1-16. https://doi.org/10.1016/0266-352X(95)91300-S.   DOI