• 제목/요약/키워드: lateral current

검색결과 550건 처리시간 0.024초

우수한 전기적 특성을 갖는 p+ 다이버터를 갖는 LTEIGBT의 제작에 관한 연구 (Study on Fabrication of The Lateral Trench Electrode IGBT with a p+ Diverter having Excellent Electrical Characteristics)

  • 김대원;박전웅;김대종;오대석;강이구;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.342-345
    • /
    • 2002
  • A new lateral trench electrode IGBT with p+ diverter was Proposed to suppress latch-up of LTIGBT. The p+ diverter was placed between the anode and cathode electrode. The latch-up of LTEIGBT with a p+ diverter was effectively suppressed to sustain an anode voltage of 8.7V and a current density of 1453A/$\textrm{cm}^2$ while in the conventional LTIGBT, latch-up occurred at an anode current density of 540A/$\textrm{cm}^2$. And the forward blocking voltage of the proposed LTEIGBT with a p+ diverter was about 140V. That of the conventional LTIGBT of the same size was no more than 105V. When the gate voltage is applied 12V, the forward conduction currents of the Proposed LTEIGBT with a p+ diverter and the conventional LIGBT are 90mA and 70mA, respectively, at the same breakdown voltage of 150V.

  • PDF

스마트 파워 IC를 위한 $p^{+}$ Diverter 구조의 횡형 트랜치 IGBT (A Latch-Up Immunized Lateral Trench IGBT with $p^{+}$ Diverter Structure for Smart Power IC)

  • 문승현;강이구;성만영;김상식
    • 한국전기전자재료학회논문지
    • /
    • 제14권7호
    • /
    • pp.546-550
    • /
    • 2001
  • A new Lateral Trench Insulated Gate Bipolar Transistor(LTIGBT) with p$^{+}$ diverter was proposed to improve the characteristics of the conventional LTIGBT. The forward blocking voltage of the proposed LTIGBT with p$^{+}$ diverter was about 140V. That of the conventional LTIGBT of the same size was 105V. Because the p$^{+}$ diverter region of the proposed device was enclosed trench oxide layer, he electric field moved toward trench-oxide layer, and punch through breakdown of LTIGBT with p$^{+}$ diverter was occurred, lately. Therefore, the p$^{+}$ diverter of the proposed LTIGBT didn't relate to breakdown voltage in a different way the conventional LTIGBT. The Latch-up current densities of the conventional LTIGBT and proposed LTIGBT were 540A/$\textrm{cm}^2$, and 1453A/$\textrm{cm}^2$, respectively. The enhanced latch-up capability of the proposed LTIGBT was obtained through holes in the current directly reaching the cathode via the p$^{+}$ divert region and p$^{+}$ cathode layer beneath n$^{+}$ cathode layer./ cathode layer.

  • PDF

양 방향 Hot Carrier 스트레스에 의한 PMOSFET 노쇠화 (PMOSFET degradation due to bidirectional hot carrier stress)

  • 김용택;김덕기;유종근;박종태;박병국;이종덕
    • 전자공학회논문지A
    • /
    • 제32A권6호
    • /
    • pp.59-66
    • /
    • 1995
  • The hot electron induced effective channel length modulation (${\Delta}L_{H}$) and HEIP characteristics in PMOSFET's after bidirectional stress are presented. Trapped electron charges in gate oxide and lateral field are calculated from the gate current model, and ${\Delta}L_{H}$(${\Delta}L_{HD},\;{\Delta}L_{HS}$) is calculated using trapped electron charges and lateral field. It has been found that ${\Delta}I_{d}$and ${\Delta}L_{H}$ are more affected by the stress order (Forward-Reverse of Reverse or Reverse-Forward) than the stress direction, and they vary logarithmically with the stress time. In contrast, ${\Delta}V_{t}$ and ${\Delta}V_{pt}$ are more affected by the stress direction thatn the stress order. The correlation between ${\Delta}V_{pt}$ and the stress time can be explanined as the following polynomial functin: ${\Delta}V_{pt}$=AT$^{n}$. It has also been shown that PMOSFET degradation is related with the gate current and the effects of ${\Delta}V_{pt}$ is the most significant.

  • PDF

베이스 영역의 불순물 분포를 고려한 집적회로용 BJT의 역포화전류 모델링 (The Modeling of the Transistor Saturation Current of the BJT for Integrated Circuits Considering the Base)

  • 이은구;김태한;김철성
    • 대한전자공학회논문지SD
    • /
    • 제40권4호
    • /
    • pp.13-20
    • /
    • 2003
  • 반도체 소자이론에 근거한 집적회로용 BJT의 역포화 전류 모델을 제시한다. 공정 조건으로부터 베이스 영역의 불순물 분포를 구하는 방법과 원형 에미터 구조를 갖는 Lateral PNP BJT와 Vertical NPN BJT의 베이스 Gummel Number를 정교하게 계산하는 방법을 제시한다. 제안된 방법의 타당성을 검증하기 위해 20V와 30V 공정을 기반으로 제작한 NPN BJT와 PNP BJT의 역포화 전류를 실측치와 비교한 결과, NPN BJT는 6.7%의 평균상대오차를 보이고 있으며 PNP BJT는 6.0%의 평균 상태오차를 보인다.

효율적인 p+ 다이버터를 갖는 수평형 트렌치 전극형 IGBT의 제작에 따른 전기적 특성에 관한 연구 (Study on Electrical Characteristics of the Fabricated Lateral Trench Electrode IGBT with p+ Diverter)

  • 강이구;김상식;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제15권9호
    • /
    • pp.750-757
    • /
    • 2002
  • A new lateral trench LTEIGBT with p+ diverter was proposed to suppress latch-up of LTIGBT The p+ diverter was placed between the anode and cathode electrode. The latch-up of LTEICBT with a p+ diverter was effectively suppressed to sustain an anode voltage of 8.7V and a current density of 1453A/$\textrm{cm}^2$ while in the conventional LTIGBT, latch-up occured at an anode current density of 540A/$\textrm{cm}^2$. In addition, the forward blocking voltage of the proposed LTEIGBT with a p+ diverter was about 140V. The forward blocking voltage of the conventional LTIGBT of the same size was no more than 105V, We fabricated the proposed LTEIGBT with a p+ diverter after the device and process simulation was finished. When the gate voltage is applied 12V, the forward conduction currents of the proposed LTEIGBT with a p+ diverter and the conventional LIGBT are 90㎃ and 70㎃, respectively, at the same breakdown voltage of 150V.

턴-오프 특성이 향상된 Shorted Anode 수평형 MOS 제어 다이리스터 (A shorted anode lateral MOS controlled thyristor with improved turn-off characteristics)

  • 김성동;한민구;최연익
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.562-567
    • /
    • 1996
  • A new lateral MOS controlled thyristor, named Shorted Anode LMCT(SA-LMCT), is proposed and analyzed by a two-dimensional device simulation. The device structure employs the implanted n+ layer which shorts the p+ anode together by a common metal electrode and provides a electron conduction path during turn-off period. The turn-off is achieved by not only diverting the hole current through the p+ cathode short but also providing the electron conduction path from the n-base into the n+ anode electrode. In addition, the modified shorted anode LMCT, which has an n+ short junction located inside the p+ anode junction, is also presented. It is shown that the modified SA-LMCT enjoys the advantage of no snap-back behavior in the forward characteristics with little sacrificing of the forward voltage drop. The simulation result shows that the turn-off times of SA-LMCT can be reduced by one-forth and the maximum controllable current density may be increased by 45 times at the expense of 0.34 V forward voltage drop as compared with conventional LMCT. (author). 11 refs., 6 figs., 1 tab.

  • PDF

A Small Scaling Lateral Trench IGBT with Improved Electrical Characteristics for Smart Power IC

  • Moon, Seung Hyun;Kang, Ey Goo;Sung, Man Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권4호
    • /
    • pp.15-18
    • /
    • 2001
  • A new small scaling Lateral Trench Insulated Gate Bipolar Transistor (SSLTIGBT) was proposed to improve the characteristics of the device. The entire electrode of the LTIGBT was replaced with a trench-type electrode. The LTIGBT was designed so that the width of device was no more than 10 ${\mu}{\textrm}{m}$. The latch-up current densities were improved by 4.5 and 7.6 times, respectively, compared to those of the same sized conventional LTIGBT arid the conventional LTIGBT which has the width of 17 ${\mu}{\textrm}{m}$. The enhanced latch-up capability of the SSLTIGBT was obtained due to the fact that the hole current in the device reaches the cathode via the p+ cathode layer underneath the n+ cathode layer, directly. The forward blocking voltage of the SSLTIGBT was 125 V. At the same size, those of the conventional LTIGBT and the conventional LTIGBT with the width of 17 ${\mu}{\textrm}{m}$ were 65 V and 105 V, respectively. Because the proposed device was constructed of trench-type electrodes, the electric field In the device were crowded to trench oxide. Thus, the punch through breakdown of LTEIGBT occurred late.

  • PDF

Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types

  • Lee, Ji Young;Hong, Sung Hwa;Moon, Il Joon;Kim, Eun Yeon;Baek, Eunjoo;Seol, Hye Yoon;Kang, Sihyung
    • Journal of Audiology & Otology
    • /
    • 제23권3호
    • /
    • pp.145-152
    • /
    • 2019
  • Background and Objectives: The present study aims to investigate whether the cochlear implant electrode array design affects the electrophysiological and psychophysical measures. Subjects and Methods: Eighty five ears were used as data in this retrospective study. They were divided into two groups by the electrode array design: lateral wall type (LW) and perimodiolar type (PM). The electrode site was divided into three regions (basal, medial, apical). The evoked compound action potential (ECAP) threshold, T level, C level, dynamic range (DR), and aided air conduction threshold were measured. Results: The ECAP threshold was lower for the PM than for the LW, and decreased as the electrode site was closer to the apical region. The T level was lower for the PM than for the LW, and was lower on the apical region than on the other regions. The C level on the basal region was lower for the PM than for the LW whereas the C level was lower on the apical region than on the other regions. The DRs on the apical region was greater for the PM than for the LW whereas the DR was narrower on the apical region than on the other regions. The aided air conduction threshold was not different for the electrode design and frequency. Conclusions: The current study would support the advantages of the PM over the LW in that the PM had the lower current level and greater DR, which could result in more localized neural stimulation and reduced power consumption.

Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types

  • Lee, Ji Young;Hong, Sung Hwa;Moon, Il Joon;Kim, Eun Yeon;Baek, Eunjoo;Seol, Hye Yoon;Kang, Sihyung
    • 대한청각학회지
    • /
    • 제23권3호
    • /
    • pp.145-152
    • /
    • 2019
  • Background and Objectives: The present study aims to investigate whether the cochlear implant electrode array design affects the electrophysiological and psychophysical measures. Subjects and Methods: Eighty five ears were used as data in this retrospective study. They were divided into two groups by the electrode array design: lateral wall type (LW) and perimodiolar type (PM). The electrode site was divided into three regions (basal, medial, apical). The evoked compound action potential (ECAP) threshold, T level, C level, dynamic range (DR), and aided air conduction threshold were measured. Results: The ECAP threshold was lower for the PM than for the LW, and decreased as the electrode site was closer to the apical region. The T level was lower for the PM than for the LW, and was lower on the apical region than on the other regions. The C level on the basal region was lower for the PM than for the LW whereas the C level was lower on the apical region than on the other regions. The DRs on the apical region was greater for the PM than for the LW whereas the DR was narrower on the apical region than on the other regions. The aided air conduction threshold was not different for the electrode design and frequency. Conclusions: The current study would support the advantages of the PM over the LW in that the PM had the lower current level and greater DR, which could result in more localized neural stimulation and reduced power consumption.

조류와 파랑 중의 인장계류식 해양구조물의 거동해석 (Behavior Analysis of a Tension Leg Platform in Current and Waves)

  • 이승철;박찬홍;배성용;구자삼
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.64-71
    • /
    • 2011
  • The Tension Leg Platform(TLP) is restrained from oscillating vertically by tethers(or tendons), which are vertical anchor lines tensioned by the platform buoyancy larger than the platform weight. Thus a TLP is a compliant structure which allows lateral movements of surge, sway, and yaw but restrains heave, pitch, roll. In this paper, the motions of a TLP in current and waves were investigated. Hydrodynamic forces and wave exciting forces acting on the TLP were evaluated using the three dimensional source distribution method. The motion responses and tension variations of the TLP were analyzed in the case of including current or not including one in regular waves and effects of current on the TLP were investigated.