• Title/Summary/Keyword: laser micromachining

Search Result 124, Processing Time 0.02 seconds

Rapid Manufacturing of Laser Micro-Patterning Using Fixed Masks (고정 마스크에 의한 레이저 미세패터닝 쾌속 제작)

  • Shin, B.S.;Oh, J.Y.
    • Laser Solutions
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • The technologies of laser micromachining are changed toward more complex-micropatterning, from the micro circle-shaped hole drilling to the micro arbitrary-shaped hole drilling. In this paper, the fundamental experiments by using DPSS 3rd harmonic $Nd:YVO_4\;laser({\lambda}=355nm)$ were carried out in order to obtain the feasibility of flexible micropatterning by various fixed masks. Fixed masks and Galvano scanners were investigatde to make micro patterns. from these experimental results, micropatterns on PEN film were rapidly manufactured in large area.

  • PDF

An analysis of Cutting Characteristic of Multilayer FPCB using Nd:YAG UV Laser System (Nd:YAG UV 레이저를 이용한 연성회로 다층기판 절단특성에 대한 연구)

  • Choi, Kyung-Jin;Lee, Young-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • The FPCB is used for electronic products such as LCD display. The process of manufacturing FPCB includes a cutting process, in which each single FPCB is cut and separated from the panel where a series of FPCBs are arrayed. The most-widely used cutting method is the mechanical punching, which has the problem of creating burrs and cracks. In this paper, the cutting characteristics of the FPCB have been experimented using Nd:YAG DPSS UV laser as a way of solving this problem. To maximize the industrial application of this laser cutting process, test samples of the multilayered FPCB have been chosen as it is actually needed in industry. The cutting area of the FPCB has four different types of layer structure. First, to cut the test sample, the threshold laser cut-off fluence has been found. Various combinations of laser and process parameters have been made to supply the acquired laser cut-off fluence. The cutting characteristics in terms of the variation of the parameters are analyzed. The laser and process parameters are optimized, in order to maximize the cutting speed and to reach the best quality of the cutting area. The laser system for the process automation has been also developed.

Micromachining for plastic mold steel using DPSS UV laser and wet etching (DPSS UV Laser와 습식 식각을 이용한 금형강 미세 가공)

  • Min, Kyoung-Ik;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun;Whang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper describes the method for the fabrication of micro dot array on a plastic mold steel using DPSS (diode pumped solid-states) UV laser and wet etching process. We suggest the process of the ablation of a photoresist (PR) coated on plastic mold steel and wet etching process using solutions of various concentrations of $FeCl_3$, $HNO_3$ in water as etchant. This method makes it possible to fabricate metallic roller mold because the microstructures are directly fabricated on the metal surface. In the range of operating conditions studied, $17\;{\mu}J$ laser pulse energy and 50 ms laser exposure time, an etchant containing 40wt% $FeCl_3$, 5wt% $HNO_3$ and etch time for 45 s gave the $10\;{\mu}m$ of micro dot pattern on plastic mold steel.

  • PDF

Laser Microfabrication of Multidirectional Side-fire Optical Fiber Tip (전방과 측면 방사 조절이 가능한 의료용 광섬유 팁 가공 기술)

  • Jung, Deok;Sohn, Ik-Bu;Noh, Young-Chul;Kim, Jin-Hyeok;Kim, Changhwan;Lee, Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1017-1022
    • /
    • 2013
  • Currently, various optical fiber tips are used to deliver laser beam for endoscopic surgery. In this paper, we demonstrated multidirectional (forward and side) firing optical fiber tip using a femtosecond micromachining and $CO_2$ laser polishing technology. We controlled the edge width of optical fiber tip, by modulating the condition of $CO_2$ laser, to regulate the amount of side and forward emission. The distal end of the optical fiber with core/clad diameter of $400/440{\mu}m$ was microstructured with cone shape by using a femtosecond laser. And then the microstructured optical fiber tip was polished by $CO_2$ laser beam result in smoothing and specular reflection at the surface of the cone structure. Finally, we operated the LightTools simulation and good agreement was generally found between the proposed model and experimental simulation.

A Comparative Study of ITO Glass Ablation Using Femtosecond and Nanosecond Lasers (펨토초 레이저와 나노초 레이저를 이용한 ITO Glass의 어블레이션 비교 연구)

  • Jeon, Jin-Woo;Shin, Young-Gwan;Kim, Hoon-Young;Choi, Wonsuk;Ji, Seok-Young;Kang, Hee-Shin;Ahn, Sanghoon;Chang, Won Seok;Cho, Sung-Hak
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.356-360
    • /
    • 2017
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency at visible and near-IR wavelengths. ITO is widely used as a transparent electrode for the fabrication of LCDs, OLEDs, and many kinds of optical applications. It is widely employed for electrodes in various electric and display sectors because of its transparency in the visible range and high conductivity. Therefore, one issue is removing a specific area of a layer of material such as ITO or metallic film on a substrate, without affecting the properties of the substrate. ITO-on-glass removal using a laser is friendlier to the environment than traditional methods. In this study, ablation of ITO film on glass using a femtosecond-laser micromachining system (wavelength 1026 nm, pulse duration 150 fs) and a nanosecond-laser micromachining system (wavelength 1027 nm, pulse duration 5 ns) are described, compared, and analyzed.

Fabrication of Titanium Microchannels by using Ar+ Laser-assited Wet Etching (레이저 유도에칭을 이용한 티타늄 미세채널 제조)

  • 손승우;이민규;정성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.709-713
    • /
    • 2004
  • Characteristics of laser-assisted wet etching of titanium in phosphoric acid were investigated to examine the feasibility of this method for fabrication of high aspect ratio microchannels. Laser power, number of scans, etchant concentration, position of beam waist and scanning speed were taken into consideration as the major process parameters exerting the temperature distribution and the cross sectional profile of etched channels. Experimental results indicated that laser power influences on both etch width and depth while number of scans and scanning speed mainly affect on the etch depth. At a low etchant concentration, the cross sectional profile of an etched channel becomes a U-shape but it gradually turns into a V-shape as the concentration increases. On the other hand, surface of the laser beam focus with respect to the sample surface is found to be a key factor determining the bubble dynamics and thus the process stability. It is demonstrated that metallic microchannels with different cross sectional profiles can be fabricated by properly controlling the process parameters. Microchannels of aspect ratio up to 8 with the width and depth ranges of 8∼32 m and 50∼300 m, respectively, were fabricated.

  • PDF

Characteristics of direct laser micromachining of IC substrates using a nanosecond UV laser (나노초 UV 레이저 응용 IC 기판 소재 조성별 가공 특성)

  • Sohn, Hyon-Kee;Shin, Dong-Sig;Choi, Ji-Yeon
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.7-10
    • /
    • 2012
  • Dimensions (line/space) of circuits in IC substrates for high-end chips (e.g. CPU, etc.) are anticipated to decrease as small as $10{\mu}m/10{\mu}m$ in 2014. Since current etch-based circuit-patterning processes are not able to address the urgent requirement from industry, laser-based circuit patterning processes are under active research in which UV laser is used to engrave embedded circuits patterns into IC substrates. In this paper, we used a nanosecond UV laser to directly fabricate embedded circuit patterns into IC substrates with/without ceramic powders. In experiments, we engraved embedded circuit patterns with dimensions (width/depth) of abut $10{\mu}m/10{\mu}m$ and $6{\mu}m/6{\mu}m$ into the IC substrates. Due to the recoil pressure occurring during ablation, the circuit patterning of the IC substrates with ceramic powders showed the higher ablation rate.

  • PDF

Rapid Fabrication of Micro Lens Array by 355nm UV Laser Irradiation (355nm UV 레이저를 이용한 마이크로 렌즈 어레이 쾌속 제작)

  • Je, Soon-Kyu;Park, Kang-Su;Oh, Jae-Yong;Kim, Kwang-Ryul;Park, Sang-Hoo;Go, Cheong-Sang;Shin, Bo-Sung
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.26-32
    • /
    • 2008
  • Micro lens array (MLA) is widely used in information technology (IT) industry fields, for examples such as a projection display, an optical power regulator, a micro mass spectrometer and for medical appliances. Recently, MLA have been fabricated and developed by using a reflow method, micro etching, electroplating, micromachining and laser local heating. Laser local thermal-expansion (LLTE) technology demonstrates the formation of microdots on the surface of polymer substrate, in this paper. We have also investigated the new direct fabrication method of placing the MLA on the surface of a SU-8 photoresist layer. We have obtained the 3D shape of the micro lens processed by UV laser irradiation and have experimentally verified the optimal process conditions.

  • PDF

Micromachining & Optical Properties of Li$_2$O-A1$_2$O$_3$-SiO$_2$ Glass System by Laser Treatment (레이저에 의한 Li$_2$O-A1$_2$O$_3$-SiO$_2$계 유리의 미세가공 및 광학적 특성)

  • 강원호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.43-45
    • /
    • 2001
  • For photosensitive and micro-structuring in $Li_2O-A1_2O_3-SiO_2$glasses by laser treatment, Nd:YAG laser in 355 nm and 1064 nm wavelength was irradiated to the glass to investigate fracture characterization and optical changes. The fractured glass surfaces irradiated by 1064 nm laser was observed by Scanning Electron Microscope(SEM) and optical microscope, and optical changes caused by 355 nm later was identified from absorption spectra. In this study, it could be expected that the laser treatment technology will be utilized for 3-dimensional micro-structure, internal waveguide, optical memory by optical absorption changes in glass matrix.

  • PDF

Laser micromachining of optical endoscopic fiber for viewing (시야각 조절이 가능한 내시경 광섬유 레이저 가공 기술)

  • Yoo, Dongyoon;Choi, Hun-Kook;Sohn, Ik-Bu;Noh, Young-Chul;Shin, Jung-Won
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • In this paper, controlling shape of optical fiber tip for endoscope was investigated for eliminating blind spot. The blind spot of endoscope is generated by divergence angle of optical fiber, so it is easy to generate blind spot when tightly focusing. In order to eliminate this region, fiber tip is necessary to be controlled as convex or concave. Illumination simulation of convex and concave type of fiber tip in the endoscope was in progress, so the distance of non- blind region was investigated in each case. As well as the simulation, the tip was fabricated as concave shape by UV laser machining. Then the beam radiation was measured to observe the blind region. The result showed that controlling the fiber tip as convex or concave shape makes the narrow blind region of illumination in endoscope.