• Title/Summary/Keyword: laser etching

Search Result 256, Processing Time 0.021 seconds

Laser-induced Thermochemical Wet Etching of Titanium for Fabrication of Microstructures (레이저 유도 열화학 습식에칭을 이용한 티타늄 미세구조물 제조)

  • 신용산;손승우;정성호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.32-38
    • /
    • 2004
  • Laser-induced thermochemical wet etching of titanium in phosphoric acid has been investigated to examine the feasibility of this method fur fabrication of microstructures. Cutting, drilling, and milling of titanium foil were carried out while examining the influence of process parameters on etch width, etch depth, and edge straightness. Laser power, scanning speed of workpiece, and etchant concentration were chosen as major process parameters influencing on temperature distribution and reaction rate. Etch width increased almost linearly with laser power showing little dependence on scanning speed while etch depth showed wide variation with both laser power and scanning speed. A well-defined etch profile with good surface quality was obtained at high concentration condition. Fabrication of a hole, micro cantilever beam, and rectangular slot with dimension of tess than 100${\mu}{\textrm}{m}$ has been demonstrated.

Etching of Silicon Wafer Using Focused Argon lon Laser Beam (집속 아르곤 이온 레이저 빔을 이용한 실리콘 기판의 식각)

  • Cheong, Jae-Hoon;Lee, Cheon;Park, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.261-268
    • /
    • 1999
  • Laser-induced thermochemical etching has been recognized as a new powerful method for processing a variety of materials, including metals, semiconductors, ceramics, insulators and polymers. This study presents characteristics of direct etching for Si substrate using focused argon ion laser beam in aqueous KOH and $CCl_2F_2$ gas. In order to determine process conditions, we first theoretically investigated the temperature characteristics induced by a CW laser beam with a gaussian intensity distribution on a silicon surface. Major process parameters are laser beam power, beam scan speed and reaction material. We have achieved a very high etch rate up to $434.7\mum/sec$ and a high aspect ratio of about 6. Potential applications of this laser beam etching include prototyping of micro-structures of MEMS(micro electro mechanical systems), repair of devices, and isolation of opto-electric devices.

  • PDF

Effects of Various Substrates on the Laser Direct Etching of the Sputtered ZnO Films (스퍼터링된 산화 아연 박막의 레이저 직접 식각 시 기판에 의한 영향)

  • Oh, Gi Taek;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.894-898
    • /
    • 2013
  • Zinc oxide(ZnO) was sputtered on various glass and flexible substrates such as polyethylene terephthalate(PET) and polycarbonate(PC). A Q-switched $Nd:YVO_4$ laser with a wavelength of 1,064 nm was used for the direct etching of ZnO films. It was possible to obtain laser etched line patterns on the ZnO films on PC substrate at some specific laser beam conditions. In the flexible substrates, more thermal energy of laser beam is expected to be spreaded for the etching process.

Laser Induced Wet Etching of Fused Silica according to Etchant (식각액에 따른 용융실리카의 레이저 습식 식각가공)

  • Lee J. H.;Lee J. K.;Jeon B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.245-249
    • /
    • 2004
  • Transparent materials such as fused silica are important materials in optical and optoelectronics field because of its outstanding properties, such as transparency in a wide wavelength range, strong damage resistance for laser irradiation, and high thermal and chemical stability. However, these properties make it difficult to micromachine silica in micro-sized quantities. In this study, we fabricated a micro patterns on the surface of fused silica plate using laser induced wet etching. KrF excimer laser was used as a light source. There were no burrs and micro cracks on the etched surface of fused silica and the flatness of the etched surface was fairly good. We investigated the influence of etchant upon the etch rate and quality in laser induced wet etching. Pyrene-acetone, toluene, and pyrene-toluene solution were used as etchant. In the side of etch rate, toluene and pyrene-toluene solution were better than pyrene-acetone solution.

  • PDF

A Study on the Characteristics of the Functional Groups of the Alkanethiol Molecules in UV Laser Photochemical Patterning and Wet Etching Process (UV Laser를 이용한 광화학적 패터닝과 습식에칭에 따른 알칸티올 분자 작용기의 특성 연구)

  • Huh, Kab-Soo;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.104-109
    • /
    • 2007
  • Photochemical patterning of self-assembled mono layers (SAMs) has been performed by diode pumped solid state (DPSS) 3rd harmonic Nd:$YVO_4$ laser with wavelength of 355 nm. SAMs patternings of parallel lines have subsequently been used either to generate compositional chemical patterns or fabricate microstructures by a wet etching. This paper describes a selective etching process with patterned SAMs of alkanetiolate molecules on the surface of gold. SAMs formed by the adsorption of alkanethiols onto gold substrate employs as very thin photoresists. In this paper, the influence of the interaction between the functional group of SAMs and the etching solution is studied with optimal laser irradiation conditions. The results show that hydrophobic functional groups of SAMs are more effective for selective chemical etching than the hydrophilic ones.

Laser-induced etching of GaAs with CFC alternatives (CFC 대체물질을 이용한 GaAs의 레이저 유도 에칭)

  • Park, Se-Ki;Lee, Cheon;Kim, Moo-Sung
    • Electrical & Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.240-245
    • /
    • 1996
  • Non-ozone layer destructive Chlorofluorocarbon(CFC) altematives(CHCIF$_{2}$ and $C_{2}$H$_{2}$F$_{4}$) have been initially used for laser-induced thenrmochemical etching of GaAs. High etching rate up to 188.mu.m/sec and an aspect ratio of 2.7 have been achieved by a single scan of laser beam, respectively. The etching rate at constant ambient gas pressure was found to saturate for beam power. The chemical compositions of the reaction products deposited on the etched groove were measured by Auger electron microscopy(AES). Etched profile, depth and width were observed by scanning electron microscope(SEM).

  • PDF

Characteristics of single/poly crystalline silicon etching by$Ar^+$ ion laser for MEMS applications (MEMS 응용을 위한 $Ar^+$ 이온 레이저에 의한 단결정/다결정 실리콘 식각 특성)

  • Lee, Hyun-Ki;Han, Seung-Oh;Park, Jung-Ho;Lee, Cheon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.396-401
    • /
    • 1999
  • In this study, $Ar^+$ ion laser etching process of single/poly-crystalline Si with $CCl_2F_2$ gas is investigated for MEMS applications. In general, laser direct etching process is useful in microelectronic process, fabrication of micro sensors and actuators, rapid prototyping, and complementary processing because of the advantages of 3D micromachining, local etching/deposition process, and maskless process with high resolution. In this study, a pyrolytic method, in which $CCl_2F_2$ gasetches molten Si by the focused laser, was used. In order to analyze the temperature profile of Si by the focused laser, the 3D heat conduction equation was analytically solved. In order to investigate the process parameters dependence of etching characteristics, laser power, $CCl_2F_2$ gas pressure, and scanning speed were varied and the experimental results were observed by SEM. The aspect ratio was measured in multiple scanning and the simple 3D structure was fabricated. In addition, the etching characteristics of $6\mum$ thick poly-crystalline Si on the insulator was investigated to obtain flat bottom and vertical side wall for MEMS applications.

  • PDF

Micromachining for plastic mold steel using DPSS UV laser and wet etching (DPSS UV Laser와 습식 식각을 이용한 금형강 미세 가공)

  • Min, Kyoung-Ik;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun;Whang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper describes the method for the fabrication of micro dot array on a plastic mold steel using DPSS (diode pumped solid-states) UV laser and wet etching process. We suggest the process of the ablation of a photoresist (PR) coated on plastic mold steel and wet etching process using solutions of various concentrations of $FeCl_3$, $HNO_3$ in water as etchant. This method makes it possible to fabricate metallic roller mold because the microstructures are directly fabricated on the metal surface. In the range of operating conditions studied, $17\;{\mu}J$ laser pulse energy and 50 ms laser exposure time, an etchant containing 40wt% $FeCl_3$, 5wt% $HNO_3$ and etch time for 45 s gave the $10\;{\mu}m$ of micro dot pattern on plastic mold steel.

  • PDF

A Study on Indirect-Direct Bandgap Structures of 2D-layered Transition Metal Dichalcogenides by Laser Etching (2차원 층상 구조 전이금속 칼코겐화합물의 레이저 식각에 의한 직접-간접 띠간격 구조 연구)

  • Moon, Eun-A;Ko, Pil-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.576-580
    • /
    • 2016
  • Single-layered transition metal dichalcogenides (TMDs) exhibit more interesting physical properties than those of bulk TMDs owing to the indirect to direct bandgap transition occurring due to quantum confinement. In this research, we demonstrate that layer-by-layer laser etching of molybdenum diselenide ($MoSe_2$) flakes could be controlled by varying the parameters employed in laser irradiation (time, intensity, interval, etc.). We observed a dramatic increase in the photoluminescence (PL) intensity (1.54 eV peak) after etching the samples, indicating that the removal of several layers of $MoSe_2$ led to a change from indirect to direct bandgap. The laser-etched $MoSe_2$ exhibited the single $MoSe_2$ Raman vibration modes at ${\sim}239.4cm^{-1}$ and ${\sim}295cm^{-1}$, associated to out-of-plane $A_{1g}$ and in-plane ${E^1}_{2g}$ Raman modes, respectively. These results indicate that controlling the number of $MoSe_2$ layers by laser etching method could be employed for optimizing the performance of nano-electronic devices.