• 제목/요약/키워드: laser drilling

검색결과 126건 처리시간 0.039초

슬라이딩 모드 제어를 이용한 마으크로 드릴의 절삭력 제어 (Cutting force regulation of microdrilling using the sliding mode control)

  • 정만실;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.842-846
    • /
    • 1997
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratios larger than 10) is gaining increased attention in a wide spectrum of precision production industries. Alternative methods such as EDM, laser drilling, etc. can sometimes replace mechanical micro-hole drilling but are not acceptable in PCB manufacture because they yield inferior hole quality and accuracy. The major difficulties in micro-hold drilling are related to wandering motions during the inlet stage, high aspect ratios, high temperature,etc. However, of all the difficulties, the most undesirable one is the increase of drilling force as the drill penetrates deeper into hold. This is caused mainly by chip related effects. Peck-drilling is thus widely used for deep hole drilling despite the fact that it leads to low productivity. Therefore, in this paper, a method of cutting force regulation is proposed to achieve continuous drilling. A proportional plus derivative (PD) and a sliding modecontrol algorithm will be implemented for controlling the spinle rotational frequeency. Experimental results will show that sliding mode control reduces the nominal cutting force and its variation better than the PD control, resulting in a number of advantages such as an increase in drill life, fast stabilization of the wandering motion, and precise positioning of the hole.

  • PDF

미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어 (Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement)

  • 정만실;조동우
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF

카본을 첨가한 LTCC 그린 시트에서 UV 레이저를 이용한 미세 홀 터짐 현상 제어 (Control of Explosion Behavior in Micro Hole Using UV Laser on LTCC Green Sheets Containing Carbon Particles)

  • 김시연;안익준;여동훈;신효순;윤호규
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.786-790
    • /
    • 2016
  • Hole explosion behaviors were observed during drilling fine holes with laser beam on the LTCC green bar of $320{\mu}m$ thick after lamination of green sheets prepared by tape casting of thick film process. The incidence of these hole explosions was inversely proportional to hole sizes. The incidence of hole explosion was 20 % number of hole with the size of $60{\mu}m$ exploded for the UV radiation, while the explosion did not appear for hole sizes over $100{\mu}m$. To prevent hole explosion behavior during laser-drilling of fine holes, carbon black powder was added as an additive in the LTCC composition, which has superior thermal durability. As a consequence, hole explosion rate was suppressed to 0.8 % for the hole size of $50{\mu}m$ green sheet with the carbon black amount of 10 weight % and the laser power of 3 watt. Added carbon is thought to reduce the heat-affected region during laser drilling.

나노초 펄스 레이저 응용 사파이어/실리콘 웨이퍼 미세 드릴링 (Laser Micro-drilling of Sapphire/silicon Wafer using Nano-second Pulsed Laser)

  • 김남성;정영대;성천야
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.13-19
    • /
    • 2010
  • Due to the rapid spread of mobile handheld devices, industrial demands for micro-scale holes with a diameter of even smaller than $10{\mu}m$ in sapphire/silicon wafers have been increasing. Holes in sapphire wafers are for heat dissipation from LEDs; and those in silicon wafers for interlayer communication in three-dimensional integrated circuit (IC). We have developed a sapphire wafer driller equipped with a 532nm laser in which a cooling chuck is employed to minimize local heat accumulation in wafer. Through the optimization of process parameters (pulse energy, repetition rate, number of pulses), quality holes with a diameter of $30{\mu}m$ and a depth of $100{\mu}m$ can be drilled at a rate of 30holes/sec. We also have developed a silicon wafer driller equipped with a 355nm laser. It is able to drill quality through-holes of $15{\mu}m$ in diameter and $150{\mu}m$ in depth at a rate of 100holes/sec.

레이저 빔 가공과 방전 가공을 이용한 복합 미세 가공 (Micromachining Using Hybrid of Laser Beam and Electrical Discharge Machining)

  • 김산하;정도관;김보현;오광환;정성호;주종남
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.108-115
    • /
    • 2009
  • Although nanosecond pulsed laser drilling and milling are rapid and non-wear processes in micromachining, the quality cannot meet the precision standard due to the recast layer and heat affected zone. On the other hand, electrical discharge machining (EDM) is a well-known high precision machining process in micro scale; however, the low material removal rate (MRR) and tool wear remain as drawbacks. In this paper, hybrid process of laser beam machining (LBM) using nanosecond pulsed laser and micro EDM was studied for micro drilling and milling. While the quality of the micro structure fabricated by this hybrid process remains as high as direct EDM, the machining time and tool wear can be reduced. In addition, variable depth of layer was introduced as an effective method improving efficiency of hybrid milling.

Thinning and drilling laser-assisted hatching in thawed embryo transfer: A randomized controlled trial

  • Le, Minh Tam;Nguyen, Thi Tam An;Nguyen, Thi Thai Thanh;Nguyen, Van Trung;Le, Dinh Duong;Nguyen, Vu Quoc Huy;Cao, Ngoc Thanh;Aints, Alar;Salumets, Andres
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제45권3호
    • /
    • pp.129-134
    • /
    • 2018
  • Objective: In frozen and thawed embryos, the zona pellucida (ZP) can be damaged due to hardening. Laser-assisted hatching (LAH) of embryos can increase the pregnancy rate. This study compared thinning and drilling of the ZP before frozen embryo transfer (FET). Methods: Patients were randomly allocated into two groups for LAH using thinning or drilling on day 2 after thawing. Twenty-five percent of the ZP circumference and 50% of the ZP thickness was removed in the thinning group, and a hole $40{\mu}m$ in diameter was made in the drilling group. Results: A total of 171 in vitro fertilization/intracytoplasmic sperm injection FET cycles, including 85 cycles with drilling LAH and 86 cycles with thinning LAH, were carried out. The thinning group had a similar ${\beta}$-human chorionic gonadotropin-positive rate (38.4% vs. 29.4%), implantation rate (16.5% vs. 14.4%), clinical pregnancy rate (36.0% vs. 25.9%), miscarriage rate (5.8% vs. 2.4%), ongoing pregnancy rate (30.2% vs. 23.5%), and multiple pregnancy rate (7.0% vs. 10.6%) to the drilling LAH group. There were no significant differences in pregnancy outcomes between subgroups defined based on age (older or younger than 35 years) or ZP thickness (greater or less than $17{\mu}m$) according to the LAH method. Conclusion: The present study demonstrated that partial ZP thinning or drilling resulted in similar outcomes in implantation and pregnancy rates using thawed embryos, irrespective of women's age or ZP thickness.

Effect of Laser Pre-Drilling on Insertion Torque of Orthodontic Miniscrews: A Preliminary Study

  • Kim, Keun-Hwa;Choi, Sung-Hwan;Cha, Jung-Yul;Hwang, Chung-Ju
    • Journal of Korean Dental Science
    • /
    • 제10권2호
    • /
    • pp.66-73
    • /
    • 2017
  • Purpose: To evaluate the effect of different-sized drill tips and laser irradiation times on the initial stability of orthodontic miniscrews placed in Er,Cr:YSGG-laser pre-drilled holes in an animal model. Materials and Methods: Laser pre-drilled holes were made in dog mandibular bone with an Er,Cr:YSGG laser using irradiation times of 5, 7, 9, 11, and 13 seconds, and tip diameters of 0.4 and 0.6 mm. The maximum diameter and depth of the pre-drilled holes was measured with micro computed tomography. The maximum insertion torque was measured during placement the miniscrew. Result: Laser pre-drilled holes were conical shaped. The maximum diameter of pre-drilled holes increased with longer laser irradiation times (P>0.05) and larger tip diameters (P<0.05). The depth of pre-drilled holes increased with longer laser irradiation times and larger tip diameters (P<0.05). When the 0.4 mm tip, but not the 0.6 mm tip, was used, the insertion torque decreased significantly with longer laser irradiation times (P<0.05). Conclusion: Tip diameter impacted insertion torque more than irradiation time. It takes at least 9 seconds using a 0.6 mm tip to create a 0.8 mm diameter and 1.0 mm depth hole in thick cortical bone.

Tri-Metal의 레이저 용접 (Laser Beam Welding of Tri-Metal)

  • 한유희;서정
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1994년도 특별강연 및 춘계학술발표 개요집
    • /
    • pp.157-160
    • /
    • 1994
  • Characteristics of laterally bonded tri-metal sheets (stainless steel/Invar/stainless steel) fabricated by laser beam welding are compared to those of samples by Imphy and Hitachi Co-operations. Residual stess of tri-metal is calculated by using of the hole-drilling stain gauge method. The aging effect of stainless steel strip on welding is also discussed. In addition to, a numerical approach for laser beam welding is tried. Finally, laser beam welding system of tri-metal can be designed on th basis of experimental and theoretical results.

  • PDF