• 제목/요약/키워드: large problem type

검색결과 415건 처리시간 0.033초

초등수학의 지필평가의 대안적인 채점방안 (Alternatives of the Standardized Test in the Elementary School Mathematics)

  • 이의원
    • 한국초등수학교육학회지
    • /
    • 제13권2호
    • /
    • pp.231-245
    • /
    • 2009
  • 최근 학생주도적인 활동을 유도하기 위하여 수행평가를 도입 적용하는 학교가 늘고 있다. 그러나 교실의 수행평가에도 불구하고 학생들의 수학적 능력은 표준화 시험지에 의하여 결정되고, 또 교육부는 학생들의 연합고사 점수로서 교육 프로그램의 질을 판단하고 그 개선효과를 기대하는 것 같다. 한편 표준화 검사는 학생 시험불안을 유발하고 자칫 그들의 대안적 방어행동을 유발할 수 있다. 본고는 초등학교의 표준화 시험의 문제점과 초등학생들의 시험불안을 완화할 수 있는 시험문제의 구성 및 채점 방안에 대하여 구안하고자 한다.

  • PDF

병렬처리를 이용한 대규모 동적 시스템의 최적제어 (Optimal Control of Large-Scale Dynamic Systems using Parallel Processing)

  • 박기홍
    • 제어로봇시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.403-410
    • /
    • 1999
  • In this study, a parallel algorithm has been developed that can quickly solve the optiaml control problem of large-scale dynamic systems. The algorithm adopts the sequential quadratic programming methods and achieves domain decomposition-type parallelism in computing sensitivities for search direction computation. A silicon wafer thermal process problem has been solved using the algorithm, and a parallel efficiency of 45% has been achieved with 16 processors. Practical methods have also been investigated in this study as a way to further speed up the computation time.

  • PDF

Test of Symmetry against Near Type III Positive Biasedness

  • Oh, Myong-Sik
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.63-68
    • /
    • 2003
  • One of the widely accepted assumptions in many statistical problem is that the underlying distribution is symmetric. Though a large number of nonparametric test are available in the literature for this problem, very few procedures focuses on the distributional structure when the symmetry assumption is rejected. Yanagimoto and Sibuya (1972) provided the various types of asymmetric distributional structure, positive biasedness, namely. In this paper we consider the test of symmetry against several new positive biasedness restrictions which are stronger than Yanagimoto and Sibuya's type II bias but weaker than type IV (III) bias.

  • PDF

초거대 언어모델과 수학추론 연구 동향 (Research Trends in Large Language Models and Mathematical Reasoning)

  • 권오욱;신종훈;서영애;임수종;허정;이기영
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.1-11
    • /
    • 2023
  • Large language models seem promising for handling reasoning problems, but their underlying solving mechanisms remain unclear. Large language models will establish a new paradigm in artificial intelligence and the society as a whole. However, a major challenge of large language models is the massive resources required for training and operation. To address this issue, researchers are actively exploring compact large language models that retain the capabilities of large language models while notably reducing the model size. These research efforts are mainly focused on improving pretraining, instruction tuning, and alignment. On the other hand, chain-of-thought prompting is a technique aimed at enhancing the reasoning ability of large language models. It provides an answer through a series of intermediate reasoning steps when given a problem. By guiding the model through a multistep problem-solving process, chain-of-thought prompting may improve the model reasoning skills. Mathematical reasoning, which is a fundamental aspect of human intelligence, has played a crucial role in advancing large language models toward human-level performance. As a result, mathematical reasoning is being widely explored in the context of large language models. This type of research extends to various domains such as geometry problem solving, tabular mathematical reasoning, visual question answering, and other areas.

동강계수의 전달에 의한 복잡 거대한 격자형 구조물의 진동해석 (Vibration Analysis for a Complex and Large Lattice Type Structure Using Transfer Dynamic Stiffness Coefficient)

  • 문덕홍;최명수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.190-195
    • /
    • 1997
  • Recently it is increased by degrees to construct complex or large lattice type structures such as bridges, towers, cranes, and structures that can be used for space technology. In general, in order to analyze, these structures we have used the finite element method(FEM). In this method, however, it is necessary to use a large amount of computer memory and computation time because the FEM requires many degrees of freedom for solving dynamic problems for these structures. For overcoming this problem, the authors have developed the transfer dynamic stiffness coefficient method(TDSCM). This method is based on the concepts of the transfer and the synthesis of the dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the dynamic stiffness coefficient. And the validity of TDSCM demonstrated through numerical computational and experimental results.

  • PDF

Efficient Algorithms for Solving Facility Layout Problem Using a New Neighborhood Generation Method Focusing on Adjacent Preference

  • Fukushi, Tatsuya;Yamamoto, Hisashi;Suzuki, Atsushi;Tsujimura, Yasuhiro
    • Industrial Engineering and Management Systems
    • /
    • 제8권1호
    • /
    • pp.22-28
    • /
    • 2009
  • We consider facility layout problems, where mn facility units are assigned into mn cells. These cells are arranged into a rectangular pattern with m rows and n columns. In order to solve this cell type facility layout problem, many approximation algorithms with improved local search methods were studied because it was quite difficult to find exact optimum of such problem in case of large size problem. In this paper, new algorithms based on Simulated Annealing (SA) method with two neighborhood generation methods are proposed. The new neighborhood generation method adopts the exchanging operation of facility units in accordance with adjacent preference. For evaluating the performance of the neighborhood generation method, three algorithms, previous SA algorithm with random 2-opt neighborhood generation method, the SA-based algorithm with the new neighborhood generation method (SA1) and the SA-based algorithm with probabilistic selection of random 2-opt and the new neighborhood generation method (SA2), are developed and compared by experiment of solving same example problem. In case of numeric examples with problem type 1 (the optimum layout is given), SA1 algorithm could find excellent layout than other algorithms. However, in case of problem type 2 (random-prepared and optimum-unknown problem), SA2 was excellent more than other algorithms.

연속체 손상역학에 따른 구조재료의 유한요소해석 (Finite element analysis of the structural material by the theory of continuum damage mechanics)

  • 김승조;김위대
    • 오토저널
    • /
    • 제13권3호
    • /
    • pp.58-67
    • /
    • 1991
  • A theory of continuum damage mechanics based on the theory of materials of type N was developed and its nonlinear finite element approximation and numerical simulation was carried out. To solve the finite elastoplasticity problems, reasonable kinematics of large deformed solids was introduced and constitutive relations based on the theory of materials of type-N were derived. These highly nonlinear equations were reduced to the incremental weak formulation and approximated by the theory of nonlinear finite element method. Two types of problems, compression moulding problem and pure bending problem, were solved for aluminum 2024.

  • PDF

양방향 3단 IMV 개발을 위한 시뮬레이션 해석 (Simulation Analysis for the Development of 3 Stage IMV)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권2호
    • /
    • pp.55-62
    • /
    • 2020
  • There are two types of IMV for MCV, the spool type and the poppet type. The spool type is used in the existing excavator MCV and easily meets large-capacity flow conditions, but has a flow force problem which affects the spool control. The poppet type stably blocks the flow and has excellent rapid response. However, the larger the capacity, the larger the diameter of the poppet needed, requiring a strong spring to withstand the oil pressure. In this study, a bi-directional three-stage IMV for MCV that can be used in medium and large hydraulic excavators was proposed. This is a poppet type, enabling bi-directional flow control and resolves the problem of proportional solenoid suction force limitation. To investigate the validity of the proposed valve, the system was mathematically modeled and the static and dynamic characteristics were investigated through the simulation using commercial software. It has been concluded that the reverse flow is possible in a regeneration circuit and that the proposed IMV can be used to perform various excavation modes.

대량 데이터를 위한 제한거절 기반의 회귀부스팅 기법 (Boosted Regression Method based on Rejection Limits for Large-Scale Data)

  • 권혁호;김승욱;최동훈;이기천
    • 대한산업공학회지
    • /
    • 제42권4호
    • /
    • pp.263-269
    • /
    • 2016
  • The purpose of this study is to challenge a computational regression-type problem, that is handling large-size data, in which conventional metamodeling techniques often fail in a practical sense. To solve such problems, regression-type boosting, one of ensemble model techniques, together with bootstrapping-based re-sampling is a reasonable choice. This study suggests weight updates by the amount of the residual itself and a new error decision criterion which constructs an ensemble model of models selectively chosen by rejection limits. Through these ideas, we propose AdaBoost.RMU.R as a metamodeling technique suitable for handling large-size data. To assess the performance of the proposed method in comparison to some existing methods, we used 6 mathematical problems. For each problem, we computed the average and the standard deviation of residuals between real response values and predicted response values. Results revealed that the average and the standard deviation of AdaBoost.RMU.R were improved than those of other algorithms.

전달 강성계수법에 의한 격자형 구조물의 자유 진동 해석 (Free Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method)

  • 문덕홍;최명수;강화중
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.361-368
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful tool for structural analysis. However, it is necessary to use a large amount of computer memory and computation time because the FEM resuires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For overcoming this problem, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the nodal dynamic stiffness coefficient. And we confirmed the validity of TSCM through numerical computational and experimental results for a lattice type structure.

  • PDF