• 제목/요약/키워드: large injection mold

검색결과 76건 처리시간 0.047초

대면적 전자빔을 이용한 사출 금형 소재의 표면개질 (Surface modification of the injection mold using large electron beam)

  • 이영민;이하용;김지수;박형욱
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.94-94
    • /
    • 2015
  • 사출금형의 표면은 제작되는 제품의 표면에 노출되기 때문에 표면조도 및 품질이 제품의 품질을 결정하는 데에 매우 중요하게 작용한다. 본 연구에서는 대면적 전자빔을 이용한 사출금형의 표면개질을 수행하였다. 대면적 전자빔 표면처리를 통하여 사출금형의 표면조도를 크게 줄일 수 있었으며, 표면 경도를 증가시켜 금형의 수명을 크게 향상시킬 수 있을 것으로 기대되었다.

  • PDF

다상유체해석을 통한 기포결함 예측과 금형설계기술 (Study for Permanent Mold Design Technology and Porosity Defect Prediction Method by Multi-Phase Flow Numerical Simulations)

  • 최영심;조인성;황호영;최정길;홍준호
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.224-232
    • /
    • 2005
  • The high-pressure die-casting is one of the most effective methods to produce a large amount of products in short cycle time. This process, however, has a problem that the gas porosity defect appears easily. The generation of gas porosity is known mainly due to the air entrapment during the injection stage. Most of numerical simulations for the molten metal flow pattern observations have done in the treating of one phase fluid flow but the gas-liquid interface is essentially multi- phase phenomenon. In this paper, the two-phase fluid flow numerical simulation methods have been adapted to predict the gas porosity generations in the molten metal. The accuracy and the usefulness of the new simulation module have been emphasized and verified through some comparison experiments.

전자회로 일체형 돔 형상의 플라스틱 부품 성형에 관한 연구 (A study on the molding of dome shaped plastic parts embedded with electronic circuits)

  • 성겸손;이호상
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.15-21
    • /
    • 2020
  • Smart systems in different application areas such as automotive, medical and consumer electronics require a novel manufacturing method of electronic, optical and mechanical functions into products. Traditional methods including mechanical assembly, bonding of plastic and electronic circuit cause the problems in large size of products and complicated manufacturing processes. In this study, thermoforming and film insert molding were applied to fabricate a dome shaped plastic part embedded with electronic circuits. The deformation of patterns printed on PET film was predicted by thermoforming simulation using T-SIM, and the results were compared with those by experiment. In order to decrease spring-back after thermoforming, the Taguchi method of design of experiment was used. Through ANOVA analysis, it was found that mold temperature was the most dominant parameter for spring-back. By using flow analysis, gate design was performed to decrease injection pressure. During film insert molding, the wash-out of ink printed on film occurred for Polycarbonate. When the resin was changed to PMMA, the wash-out disappeared due to low melt temperature.

W-Cu의 마이크로 금속분말사출성형 (Micro Metal Powder Injection Molding in the W-Cu System)

  • 김순욱;양주환;박순섭;김영도;문인형
    • 한국분말재료학회지
    • /
    • 제9권4호
    • /
    • pp.267-272
    • /
    • 2002
  • The production of micro components is one of the leading technologies in the fields of information and communiation, medical and biotechnology, and micro sensor and micro actuator system. Microfabrication (micromachining) techniques such as X-ray lithography, electroforming, micromolding and excimer laser ablation are used for the production of micro components out of silicon, polymer and a limited number of pure metals or binary alloys. However, since the first development of microfabrication technologies there have been demands for the cost-effective replication in large scale series as well as the extended range of available material. One such promising process is micro powder injection molding (PIM), which inherits the advantages of the conventional PIM technology, such as low production cost, shape complexity, applicability to many materials, applicability to many materials, and good tolerance. This paper reports on a fundamental investigation of the application of W-Cu powder to micro metal injection molding (MIM), especially in view of achieving a good filling and a safe removal of a micro mold conducted in the experiment. It is absolutely legitimate and meaningful, at the present state of the technique, to continue developing the micro MIM towards production processes for micro components.

사출성형시 두께방향으로의 유동특성에 관한 유한요소 해석 (Finite element analysis for the flow characteristics along the thickness direction in injection molding)

  • 이호상;신효철
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.1026-1035
    • /
    • 1987
  • 본 연구에서는 두께방향에 따른 유동을 해석하는데 "fountain effect" 및 열 전달 현상을 동시에 고려하면서 진전하는 자유표면의 형상을 정확히 구하기 위한 유한 요소법을 이용한 수치해석법을 제안하고 그 방법을 적용하여 금형벽의 온도를 변화시 켜가면서 구체적인 유동특성을 해석하였다.특성을 해석하였다.

미세 구조물의 충전에 관한 실험 및 수치해석 (Experimental & Numerical Result of the filling of Micro Structures in Injection Molding)

  • 이재구;이봉기;권태헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.111-114
    • /
    • 2005
  • Experimental and numerical studies were carried out in order to investigate the processability and the transcriptability of the injection molding of micro structures. For this purpose, we designed a mold insert having micro rib patterns on a relatively thick base part. Mold insert has a base of 2mm thickness, and has nine micro ribs on that base plate. Width and height of the rib are $300{\mu}m\;and\;1200{\mu}m$, respectively. We found a phenomenon similar to 'race tracking', due to 'hesitation' in the micro ribs. As the melt flows, it starts to cool down and melt front located in the ribs near the gate cannot penetrate further because the flow resistance is large in that almost frozen portion. When the base is totally filled, the melt front away from the gate is not frozen yet. Therefore, it flows back to the gate direction through the ribs. Consequently, transcriptability of the rib far from the gate is better. We also verified this phenomenon via numerical simulation. We further investigated the effects of processing conditions, such as flow rate, packing time, packing pressure, wall temperature and melt temperature, on the transcriptability. The most dominant factor that affects the flow pattern and the transcriptability of the micro rib is flow rate. High flow rate and high melt temperature enhance the transcriptability of micro rib structure. High packing time and high packing pressure result in insignificant dimensional variations of the rib. Numerical simulation also confirms that low flow rate causes a short shot of micro ribs and high wall temperature helps the filling of the micro ribs.

  • PDF

광섬유 수동정렬을 위한 단일 모드 대형 코어 폴리머 광도파로 (Large core polymeric single mode waveguide for passive fiber alignment)

  • 조수홍;백유진;오민철
    • 한국광학회지
    • /
    • 제16권1호
    • /
    • pp.79-84
    • /
    • 2005
  • 정력 오차 허용 범위를 증가 시켜서 효과적인 수동정렬이 가능토록 하기 위한 단일 모드 대형 코어 폴리머 광도파로를 구현하였다. 대형 코어 광도파로는 TEC(thermally expanded core) 광섬유의 모드와 일치하는 큰 도파모드를 가진다. 이로 인해 광섬유와 도파로의 정렬오차로 인한 모드 결합 손실을 줄일 수 있게 된다. 코어와 클래딩의 굴절률 차이가 5 ${\times}$ $10^{-4}$ 인 폴리머 재료를 이용하여 25 ${\times}$ 25 $\mu\textrm{m}$$^2$ 크기의 정사각형 광도파로를 제작하였으며 도파모드 관측결과 단일모드로 동작함을 확인하였다. 이와 같이 두꺼운 형태의 광도파로 구조 제작을 위하여 자외선 경화를 이용한 인젝션 몰딩(injection molding) 공정을 사용하였다. 제작된 광도파로 소자를 TEC 광섬유와 정렬연결을 할 때 정렬오차가 4.5 $\mu\textrm{m}$ 까지 증가하더라도 삽입손실 증가는 0.5 dB 이하고 유지됨을 확인하였다.

블로우 성형품 자동 패키징 시스템 개발 (Development of the automatic packaging system for blow molding products)

  • 김건희;정우철;허영무;윤길상;장성호;신광호
    • Design & Manufacturing
    • /
    • 제2권2호
    • /
    • pp.15-19
    • /
    • 2008
  • In this paper, the automatic assembly and packaging system was developed for PET blow molding products. The PET blow molding products mainly are used in groceries case and are in great demand. Generally, the molding process is compose of 4 processes such as plastic resin injection, molding, ejecting and packaging. In case of packaging process, although amount of work per hour is very large, all processes are still performed by the manual work. For this reason, the automatic packaging system was developed with the function of automatic hand-grip part assembly. For the development of system, the existing processes and the shape of molding product were analyzed and specifications were deducted. Finally, the automatic assembly and packaging system was developed and applied to the manufacturing field.

  • PDF

Nano Pillar Array 사출성형을 이용한 DNA 분리 칩 개발 (Development of the DNA Sequencing Chip with Nano Pillar Array using Injection Molding)

  • 김성곤;최두선;유영은;제태진;김태훈;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1206-1209
    • /
    • 2005
  • In recent, injection molding process for features in sub-micron scale is under active development as patterning nano-scale features, which can provide the master or stamp for molding, and becomes available around the world. Injection molding has been one of the most efficient processes for mass production of the plastic product, and this process is already applied to nano-technology products successfully such as optical storage media like DVD or BD which is a large area plastic thin substrate with nano-scale features on its surface. Bio chip for like DNA sequencing may be another application of this plastic substrate. The DNA can be sequenced using order of 100 nm pore structure when making the DNA flow through the pore structure. Agarose gel and silicon based chip have been used to sequence the DNA, but injection molded plastic chip may have benefit in terms of cost. This plastic DNA sequencing chip has plenty of pillars in order of 100 nm in diameter on the substrate. When the usual features in case of DVD or BD have very low aspect ratio, even less than 0.5, but the DNA chip will have relatively high aspect ratio of about 2. It is not easy to injection mold the large area thin substrate with sub-micron features on its surface due to the characteristics of the molding process and it becomes much more difficult when the aspect ratio of the features becomes high. We investigated the effect of the molding parameters for injection molding with high aspect ratio nano-scale features and injection molded some plastic DNA sequencing chips. We also fabricated PR masters and Ni stamps of the DNA chip to be used for molding

  • PDF