• Title/Summary/Keyword: large displacement

Search Result 1,403, Processing Time 0.028 seconds

An application of large displacement limit analysis to frame structures

  • Challamel, Noel
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.159-177
    • /
    • 2009
  • The aim of this paper is to give a rigorous framework for the interpretation of limit analysis results including large displacements. The presentation is oriented towards unidimensional media (beams) but two-dimensional (plates) or three-dimensional media are also concerned. A single-degree-of-freedom system is first considered: it shows the basic phenomena of large displacement limit analysis or second-order limit analysis. The results are compared to those of a continuous system and the differences between both systems are discussed. Theoretical results are obtained using the kinematical approach of limit analysis. An admissible load-displacement plane is then defined, according to the yield design theory. The methodology used is applied to frame structures. The presented results are nevertheless different from those already published in the literature, as the virtual displacement field can be distinguished from the displacement field at collapse. The simplicity of large displacement limit analysis makes it attractive for practical engineering applications. The load-displacement upper bound can be used for instance in the optimal design of steel frames in seismic areas.

Large displacement geometrically nonlinear finite element analysis of 3D Timoshenko fiber beam element

  • Hu, Zhengzhou;Wu, Minger
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.601-625
    • /
    • 2014
  • Based on continuum mechanics and the principle of virtual displacements, incremental total Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam element was developed. According to the basic assumption of plane section, the displacement field of an arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear deformation effect was taken account. Furthermore, a nonlinear finite element method program has been developed and several examples were tested to demonstrate the accuracy and generality of the three dimensional beam element.

Large Displacement Bimorph Actuator Using MEMS Technology (멤스 기술을 이용한 대변형 바이모프 구동기)

  • 정원규;최석문;김용준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1286-1289
    • /
    • 2004
  • A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene(PVDF-TrFE). The large difference of coefficient of thermal expansion(CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a large deflection with relatively small temperature rising. Compared to the most conventional micro actuators based on MEMS(micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. The proposed actuator can find applications where a large vertical displacement is needed while keeping compact overall device size, such as a micro zooming lens.

  • PDF

Large Displacement Polymer Bimorph Actuator for Out-of-Plane Motion

  • Jeung Won-Kyu;Choi Seog-Moon;Kim Yong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.263-267
    • /
    • 2006
  • A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene (PVDF-TrFE). The large difference of coefficient of thermal expansion (CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a significant deflection with relatively small temperature rise. Compared to the most conventional micro actuators based on MEMS (micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. Additionally, we can achieve response time of 14.6 ms, resonance frequency of 12 Hz, and reliability ability of $10^5$ cycles. The proposed actuator can find applications where a large vertical displacement is needed while maintaining compact overall device size, such as a micro zooming lens, micro mirror, micro valve and optical application.

Robust Controllers for Large Space Structures Using an SPR Filter and Displacement Feedback (변위ㆍ정보와 SPR 필터를 이용한 대형 우주 구조물의 강인 제어기에 관한 연구)

  • 손영익;심형보;조남훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.520-525
    • /
    • 2003
  • A robust controller for large space structures(LSS) is studied from passivity point of view. While velocity sensors are commonly used for proportional-derivative (PD) control law to stabilize large space structures, if the structure can be controlled without velocity measurements, it is desirable against the failure of velocity sensors and for the cost reduction of the sensing system. In a recent result a dynamic output feedback control law has been provided using only displacement measurements. This paper presents a passivity-based controller design method and provides an alternative stability analysis tool for the previous displacement feedback robust control law. The closed-loop system can be viewed as a feedback interconnection of a passivated large space structure (LSS) and a strictly positive real (SPR) system.

Application of Seismic Base Isolation With Anti-Uplift Device for Arch Structure (아치 구조물의 지진응답 제어를 위한 들림방지 면진장치의 적용)

  • Kim, Gee-Cheol;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.169-176
    • /
    • 2020
  • When an unexpected excessive seismic load is applied to the base isolation of arch structure, the seismic displacement of the base isolation may be very large beyond the limit displacement of base isolation. These excessive displacement of the base isolation causes a large displacement in the upper structure and large displacement of upper structure causes structural damage. Therefore, in order to limit the seismic displacement response of the base isolation, it is necessary to install an additional device such as an anti-uplift device to the base isolation. In this study, the installation direction of the base isolation and the control performance of the base isolation installed anti-uplift device were investigated. The installation direction of the base isolation of the arch structure is determined by considering the horizontal and vertical reaction forces of the arch structure. In addition, the separation distance of the anti-uplift device is determined in consideration of the design displacement of the base isolation and the displacement of the arch structure.

Seismic Analyses of Soil Pressure against Embedded Mat Foundation and Pile Displacements for a Building in Moderate Seismic Area (중진지역 건축물의 묻힌온통기초에 작용하는 토압과 말 뚝변위에 대한 지진해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Seismic analyses of a pile under a large rigid basement foundation embedded in the homogeneous soil layer were performed practically by a response displacement method assuming a sinusoidal wave form. However, it is hard to take into account the characteristics of a large mat foundation and a heterogeneous soil layer with the response displacement method. The response displacement method is relevant to the 2D problems for longitudinal structures such as tunnel, underground cave structure, etc., but might not be relevant with isolated foundations for building structures. In this study, seismic pile analysis by a pseudo 3D finite element method was carried out to compare numerical results with results of the response displacement method considering 3D characteristics of a foundation-soil system which is important for the building foundation analyses. Study results show that seismic analyses results of a response displacement method are similar to those of a pseudo 3D numerical method for stiff and dense soil layers, but they are too conservative for a soft soil layer inducing large soil pressures on the foundation wall and large pile displacements due to ignored foundation rigidity and resistance.

Lateral Displacement Analysis of Concrete Electric Pole Foundation Grounds (배전용 콘크리트전주 기초지반의 횡방향변위 분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.42-49
    • /
    • 2009
  • The effects of various forces acting on concrete pole are analyzed using finite element method how the forces affect on ground displacement. The soil types, wind load location of anchor block embedded depth of pole, and distance between poles are varied to find out effects on lateral displacement. Anchor block is effective when it is located at 1/4 of embedded depth The displacement is decreases as elastic modulus increases. Concrete reinforcement for loosened ground is necessary for double poles because double poles cause large excavation. When embedded depth ratio decrease, lateral displacement increase as closer to ground surface. Large embedded depth is effective to reduce lateral displacement, and the distance between poles is not much large factor.

Seismic Response on Thin Shell as Structural Foundation (기초구조물로서 얇은 쉘 구조물의 지진응답)

  • Yee Hooi Min;Azizah Abdul Nassir;Kim Jae Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.31-41
    • /
    • 2024
  • This study aims to investigate the seismic response of a large span thin shell structures and assess their displacement under seismic loads. The study employs finite element analysis to model a thin shell structure subjected to seismic excitation. The analysis includes eigenvalue analysis and time history analysis to evaluate the natural frequencies and displacement response of the structure under seismic loads. The findings show that the seismic response of the large span thin shell structure is highly dependent on the frequency content of the seismic excitation. The eigenvalue analysis reveals that the tenth mode of vibration of the structure corresponds to a large-span mode. The time history analysis further demonstrates, with 5% damping, that the displacement response of the structure at the critical node number 4920 increases with increasing seismic intensity, reaching a maximum displacement of 49.87mm at 3.615 seconds. Nevertheless, the maximum displacement is well below the allowable limit of the thin shell. The results of this study provide insight into the behaviour of complex large span thin shell structures as elevated foundations for buildings under seismic excitation, based on the displacement contours on different modes of eigenvalues. The findings suggest that the displacement response of the structure is significant for this new application of thin shell, and it is recommended to enhance the critical displacement area in the next design phase to align with the findings of this study to resist the seismic impact.

Optical Flow for Motion Images with Large Displacement by Functional Expansion

  • Kim, Jin-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1680-1691
    • /
    • 2004
  • One of the representative methods of optical flow is a gradient method which estimates the movement of an object based on the differential of image brightness. However, the method is ineffective for large displacement of the object and many improved methods have been proposed to copy with such limitations. One of these improved techniques is the multigrid processing, which is used in many optical flow algorithms. As an alternative novel technique we have been proposing an orthogonal functional expansion method, where whole displacements are expanded from low frequency terms. This method is expected to be applicable to flow estimation with large displacement and deformation including expansion and contraction, which are difficult to cope with by conventional optical flow methods. In the orthogonal functional expansion method, the apparent displacement field is calculated iteratively by a projection method which utilizes derivatives of the invariant constraint equations of brightness constancy. One feature of this method is that differentiation of the input image is not necessary, thereby reducing sensitivity to noise. In this paper, we apply our method to several real images in which the objects undergo large displacement and/or deformation including expansion. We demonstrate the effectiveness of the orthogonal functional expansion method by comparing with conventional methods including our optimally scaled multigrid optical flow algorithm.

  • PDF