• Title/Summary/Keyword: large deviations analysis

Search Result 79, Processing Time 0.023 seconds

Parameter Calibration o fthe Nonlinear Muskingum Model using Harmony Search

  • Geem, Jong-Woo;Kim, Joong-Hoon;Yoon, Yong-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.3-10
    • /
    • 2000
  • A newly developed heuristic algorithm, Harmony Search, is applied to the parameter calibration problem of the nonlinear Muskingum model. The Harmony Search could, mimicking the improvisation of music players, find better parameter values for in the nonlinear Muskingum model than five other methods including another heuristic method, genetic algorithm, in the aspect of SSQ (the sum of the square of the deviations between the observed and routed outflows) as well as in the aspects of SAD (the sum of the absolute value of the deviations), DPO (deviations of peak of routed and actual flows) and DPOT (deviations of peak time of rented and actual outflow). Harmony Search also has the advantage that it does not require the process of assuming the initial values of design parameters. The sensitivity analysis of Harmony Memory Considering Rate showed that relatively large values of Harmony Memory Considering Rate makes the Harmony Search converse to a better solution.

  • PDF

Information Requirements for Model-based Monitoring of Construction via Emerging Big Visual Data and BIM

  • Han, Kevin K.;Golparvar-Fard, Mani
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.317-320
    • /
    • 2015
  • Documenting work-in-progress on construction sites using images captured with smartphones, point-and-shoot cameras, and Unmanned Aerial Vehicles (UAVs) has gained significant popularity among practitioners. The spatial and temporal density of these large-scale site image collections and the availability of 4D Building Information Models (BIM) provide a unique opportunity to develop BIM-driven visual analytics that can quickly and easily detect and visualize construction progress deviations. Building on these emerging sources of information this paper presents a pipeline for model-driven visual analytics of construction progress. It particularly focuses on the following key steps: 1) capturing, transferring, and storing images; 2) BIM-driven analytics to identify performance deviations, and 3) visualizations that enable root-cause assessments on performance deviations. The information requirements, and the challenges and opportunities for improvements in data collection, plan preparations, progress deviation analysis particularly under limited visibility, and transforming identified deviations into performance metrics to enable root-cause assessments are discussed using several real world case studies.

  • PDF

Parameter Calibration of the Nonlinear Muskingum Model using Harmony Search

  • Geem, Zong-Woo;Kim, Joong-Hoon;Yoon, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.3-10
    • /
    • 2000
  • A newly developed heuristic algorithm, Harmony Search, is applied to the parameter calibration problem of the nonlinear Muskingum model. The Harmony Search could, mimicking the improvisation of music player, find better parameter values for in the nonlinear Muskingum model than five other methods including another heuristic method, genetic algorithm, in the aspect of SSQ(the sum of the square of the deviations between the observed and routed outflows) as well as in the aspects of SAD(the sum of the absolute value of the deviations), DPO(deviations of peak of routed and actual flows) and DPOT(deviatios of peak time of routed and actual outflow). Harmony Search also has the advantage that it does not require the process of asuming the initial values of desing parameters. The sensitivity analysis of Harmony Memory Considering Rate showed that relatively large values of Harmony Memory Considering Rate makes the Harmony Search converge to a better solution.

  • PDF

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

A reliability-based criterion of structural performance for structures with linear damping

  • Kovaleva, Agnessa
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.313-320
    • /
    • 2006
  • The reliability analysis of structures subjected to stochastic loading involves evaluation of time and probability of the system's residence in a reference domain. In this paper, we derive an asymptotic estimate of exit time for multi-degrees-of-freedom structural systems. The system's dynamics is governed by the Lagrangian equations with linear dissipation and fast additive noise. The logarithmic asymptotic of exit time is found explicitly as a sum of two terms dependent on kinetic and potential energy of the system, respectively. As an example, we estimate exit time and an associated structural performance for a rocking structure.

Probabilistic sensitivity of base-isolated buildings to uncertainties

  • Gazi, Hatice;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.441-457
    • /
    • 2018
  • Characteristic parameter values of seismic isolators deviate from their nominal design values due to uncertainties and/or errors in their material properties and element dimensions, etc. Deviations may increase over service life due to environmental effects and service conditions. For accurate evaluation of the seismic safety level, all such effects, which would result in deviations in the structural response, need to be taken into account. In this study, the sensitivity of the probability of failure of the structures equipped with nonlinear base isolation systems to the uncertainties in various isolation system characteristic parameters is investigated in terms of various isolation system and superstructure response parameters in the context of a realistic three-dimensional base-isolated building model via Monte Carlo Simulations. The inherent record-to-record variability nature of the earthquake ground motions is also taken into account by carrying out analyses for a large number of ground motion records which are classified as those with and without forward-directivity effects. Two levels of nominal isolation periods each with three different levels of uncertainty are considered. Comparative plots of cumulative distribution functions and related statistical evaluation presented here portray the potential extent of the deviation of the structural response parameters resulting from the uncertainties and the uncertainty levels considered, which is expected to be useful for practicing engineers in evaluating isolator test results for their projects.

Characteristic Analysis of Spiral-Grooved Pump Seal (나선 홈 펌프 시일의 특성 해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.799-804
    • /
    • 2002
  • In this paper the leakage prediction and rotordynamic analysis of an annular seal with a smooth rotor and spiral-grooved stator are performed. For developing a theoretical model, the three-control-volume analysis of the circumferentially-grooved seal is expanded by considering pressure reduction due to the pumping effect of spiral groove and pressure flow through the spiral groove. Results by the present analysis are compared with available experimental data. For leakage the analysis results generally show a reasonable agreement to the experimental results. For rotordynamic coefficients the analysis results show the same trend as the experimental results for rotor speed with spiral angles, but their magnitudes show somewhat large deviations.

  • PDF

A Topological Analysis of Large Scale Structure Using the CMASS Sample of SDSS-III

  • Choi, Yun-Young;Kim, Juhan;Kim, Sungsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.56.2-56.2
    • /
    • 2013
  • We study the three-dimensional genus topology of large-scale structure using the CMASS Data Release 11 sample of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The CMASS sample yields a genus curve that is characteristic of one produced by Gaussian random-phase initial conditions. The data thus supports the standard model of inflation where random quantum fluctuations in the early universe produced Gaussian random-phase initial conditions. Modest deviations in the observed genus from random phase are as expected from the nonlinear evolution of structure. We construct mock SDSS CMASS surveys along the past light cone from the Horizon Run 3 (HR3) N-body simulations, where gravitationally bound dark matter subhalos are identified as the sites of galaxy formation. We study the genus topology of the HR3 mock surveys with the same geometry and sampling density as the observational sample, and the observed genus topology to be consistent with LCDM as simulated by the HR3 mock samples.

  • PDF

Development of Bonded Wafer Analysis System (본딩 웨이퍼 분석 시스템 개발)

  • Jang, Dong-Young;Ban, Chang-Woo;Lim, Young-Hwan;Hong, Suk-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.969-975
    • /
    • 2009
  • In this paper, bonded wafer analysis system is proposed using laser beam transmission; while the transmission model is derived by simulation. Since the failure of bonded wafer stems in void existence, transmittance deviations caused by the thickness of the void are analyzed and variations of the intensity through the void or defect easily have been recognized then the testing power has been increased. In addition, large screen display on laser study has been done which resulted in acquiring a feasible technique for analysis of the whole bonding surface. In this regard, three approaches are demonstrated in which Halogen lamp, IR lamp and laser have been tested and subsequently by results comparison the optimized technique using laser has been derived.

Development of Calculation Technique for Probabilistic Functions Used in the Reliability Analysis of Agricultural Structures (농업용구조물의 신뢰성해석에 이용되는 확률함수의 연산방법 개발)

  • 곽영철;이경재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.95-102
    • /
    • 1997
  • The technique of the calculation for probabilistic functions used in the reliability analysis of agricultural structures is proposed in this paper for adapting the standardization method using a numerical intergration. The proposed standardization method deals with the structures whose deviations of material properties and loads are large such that the deviation range from 20% to 70%. The results computed by the proposed method are compared with those obtained by the Monte Carlo Simulation. Deterministic values such as deflection, stress, obtained by conventional structural analysis can be directly changed to probabilistic distributions by the proposed method.

  • PDF