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ABSTRACT: This paper introduces a new method for identification of building energy performance problems. The 

presented method is based on automated analysis and visualization of deviations between actual and expected energy 

performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR 

models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a 

consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D 

reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models 

of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal 

model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are 

superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the 

actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick 

and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest 

neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance 

deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on 

several interior locations of a residential building and an instructional facility. Our empirical observations show that the 

automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately 

identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building 

performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks 

such as evaluating possible remedial alternatives.  
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1. INTRODUCTION 

Today, increasing the efficiency of new and existing 

buildings and reducing their associated energy loss is 

getting more attention in the construction industry. The 

U.S. Department of Energy has estimated that home 

owners and facility managers can save 5-30% on their 

energy bills by making upgrades to their facilities [1]. 

Currently, space conditioning (i.e., heating, cooling, 

ventilation, and air-conditioning) is the largest single end-

user of energy in non-industrial facilities [2]. To make the 

best use of the HVAC system, several factors such as 

building occupant’s behaviors and appliance’s energy 

efficiency need to be considered. Among these, one major 

factor which needs immediate attentions is to improve the 

condition of the building materials. The load on an 

HVAC system can be directly influenced by the poor 

thermal behaviors of buildings (e.g., thermal defects and 

air leakages in building envelopes) and in turn can cause 

the total building energy consumptions to be increased by 

more than 10 percent [3]. Today, roughly half of the 

entire building stocks in the U.S. (i.e., about 150 billion 

square feet of the existing buildings) suffer from such 

faulty behaviors and require renovation over the next 30 

years to meet the higher energy standards. [4]. Yet, the 

current building diagnostic practices do not easily and 

accurately identify building performance problems such 

as insulation voids caused by building degradation. This 

limitation is also highlighted by the National Institute of 

Standards and Technology (NIST) as one of the top 

challenges associated with the current practices of 

building diagnostics [5]. 

In the meantime, infrared thermography as a reality 

capture method for sensing surface temperature variations 
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is gaining popularity among energy auditors. 

Nevertheless, identifying potential performance problems 

using thermal cameras for building retrofit is still 

challenging due to the following reasons: 

(1) Thermal images captured from consumer-level 

thermal cameras typically have low spatial resolutions 

(160×120 or 320×240 pixels). As a result, modeling the 

whole building energy performance requires large 

numbers of thermal images. Not only auditors need to 

collect a large number of unordered imagery, but also 

they do not typically geo-tag each image they capture. 

Thus, it is difficult at a later stage to figure out what area 

these images are representing. Understanding what 

building components are associated with the performance 

problems detected in thermal imagery is a challenge for 

rapid building diagnostics. Quick and easy identification 

of the location and characteristics of the defects can 

minimize time and efforts required for diagnosis, and in 

turn enable auditors to spend more time on the retrofit 

decision-making. 

(2) Current thermographic inspections are typically 

qualitative. Such analyses mainly focus on visual 

detection of the abnormal thermal regions such as hot and 

cold spots. Consequently, the knowledge and experience 

of the auditors can have a direct impact on the quality of 

the inspections [6, 7]. Due to the absence of energy 

performance benchmarks for comparison with the actual 

measurements, the current practice may adversely affect 

the diagnosis of performance problems, making it 

subjective and error-prone. 

To address these challenges, this paper presents a new 

automated approach for quick and reliable identification 

of potential performance problems through a systematic 

and non-intrusive comparison of measured and simulated 

energy performance of a building. The proposed method 

for automated analysis and intuitive visualization of 

performance deviations builds on the recently prototyped 

EPAR modeling method [8] and leverages two emerging 

sources of information: (1) unordered collection of digital 

and thermal images collected using a single hand-held 

thermal camera with a built-in digital lens: these images 

enable the actual energy performance of the building 

under inspection to be modeled in 3D; (2) computational 

fluid dynamics (CFD) models: these models provide 

spatial distributions of the dynamic thermal performances 

and enable the expected energy performance to be 

modeled in 3D. Aiming at automated analysis and 

visualization of potential energy performance problems, 

this paper introduces two new algorithms: (1) 3D thermal 

mesh modeling using k-d tree and nearest neighbor 

searching; and (2) automated visualization of 

performance deviations in the EPAR models using a 

metaphor based on traffic light colors. In the following 

sections, first the state of knowledge is briefly reviewed. 

Next, the objective, the underlying algorithms, and 

computational processes are presented in detail. Finally, 

experimental results, the potential benefits, and 

limitations of the proposed method are addressed. 

2. BACKGROUND 

2.1 3D Thermal Modeling of Buildings 

There have been many recent attempts in the building 

diagnostics research community to overcome the 

challenges associated with the application of large 

numbers of unordered and non-geo-registered thermal 

imagery. For example, the picture-in-picture function 

which is available for newer thermal cameras enables to 

pair thermal and digital images captured from the same 

location. Nonetheless, exploring large numbers of these 

overlaid 2D images for the purpose of entire building 

diagnostic can be time-consuming. To address this 

limitation, several researchers have focused on 3D 

thermal modeling of the building environments. In the 

AEC community, Cho and Wang [9] presented 3D 

thermal modeling of building façades using a hybrid 

LIDAR system which consists of a laser scanner and a 

thermal camera. This method generates the 3D laser 

scanning point clouds for building envelops and assigns 

temperature values to each reconstructed point. The 

proposed method has been extensively tested for the 

façade of a residential building, and promising results 

were presented. Similarly, Lagüela et al [6] introduced a 

methodology for registering temperature data with the 3D 

building point clouds generated using a terrestrial laser 

scanner. Im et al. [10] proposed a visualization method 

for 3D thermal models of building envelops on web-

based geospatial systems such as Google Earth. Despite 

the effectiveness for surveying and modeling large-scale 

building exteriors and high measurement accuracies, 

using thermography with laser scanning for small interior 

spaces can be challenging. Recently, Lagüela et al. [11] 

outlined these challenges and proposed an image-based 

method for 3D building thermal modeling that can be 

used for indoor environments. Nonetheless, the proposed 

method involved several semi-automatic image 

registration and mosaic steps. Considering the large 

numbers of unordered thermal imagery, there is still a 

need for minimizing the time and effort required for semi-

automated registration processes. 

2.2 Building Performance Comparison using CFD 

Models 

By solving the governing partial differential equations 

for mass, momentum, and energy conservation, the CFD 

analysis can predict the spatial distributions of thermal 

performance within each building zone [12]. Recently, 

the CFD analysis has been successfully applied to several 

energy performance studies for various indoor building 

environments [13, 14]. These works concentrated on 

comparison of the simulated thermal performance with 

the measured data captured by using thermocouples. Yet, 

identification of energy problems by comparing the CFD 

results and actual measurements still has the following 

challenges: (1) the state-of-the-art researches mainly use a 

limited number of designated locations for comparison 

purposes. The points-based comparison using only a few 

points does not comprehensively identify the areas that 

contain potential defects in a given space; (2) manual 

identification of the 3D locations of thermocouples in the 

CFD model may be prone to user selection error. 

Repeating the comparison for a large number of points 

280



manually can also be very time-consuming and labor-

intensive. To identify potential energy problems from 

performance deviations in a given space, there is still a 

need for a method that can automatically and accurately 

compare the actual and simulated energy performance of 

the building for the entire collection of points. 

3. OVERVIEW OF THE PROPOSED METHOD 

Given an EPAR model, formed by using a collection of 

unordered yet paired digital and thermal imagery as well 

as a CFD model, our goal is to create and validate a new 

method that can automatically calculate energy 

performance deviations and visualize potential problems 

in the EPAR model. The data and process in the proposed 

EPAR v2.0 modeling method are shown in Figure 1. Our 

approach mainly consists of four steps: (1) Generating 3D 

building and thermal point cloud models using two 

image-based 3D reconstruction pipelines [8]; (2) 

Simulating the building energy performance using the 

CFD analysis, and forming an expected 3D spatio-

thermal model; (3) Superimposing the resulting actual 

and expected energy performance models in a common 

3D environment, and generating the EPAR models; and 

finally (4) Automatically calculating and visualizing the 

performance deviations using new algorithms for 3D 

thermal mesh modeling and color coding based on the 

metaphor of traffic light colors. The following sections 

describe each of these steps in detail. 

4. EPAR MODELING 

4.1 Actual 3D Spatio-Thermal Modeling 

We use a compute vision method known as Structure-

from-Motion (SfM) to generate the 3D geometrical 

models of the buildings under inspection. The goal of the 

SfM process is to automatically estimate the extrinsic 

(e.g., locations and orientations) as well as the intrinsic 

camera parameters (e.g., focal length and radial distortion 

parameters). The SfM procedure involves the following 

four steps: (1) Detecting distinct feature points in each 

digital image: In this step, we use the graphic processing 

unit (GPU)-based implementation [15] of the scale-

invariant feature transform (SIFT) algorithm [16] to 

reduce the computational cost. This method can rapidly 

find distinctive points invariant to possible changes in 

rotation, scale, and illumination for multiple images that 

are depicting the same object; (2) Matching the detected 

feature points across each image pairs. After capturing the 

intensity gradients of each feature point in form of a 

descriptor vector, feature descriptors in each image are 

matched using a nearest neighborhood matching 

algorithm. The Epipolar geometry between each image 

pair are then formed by estimating the Fundamental 

matrix (F) within random sample consensus (RANSAC) 

algorithm. Fitting F-matrix in the RANSAC loop helps 

eliminate false matches attributed to typically repeated 

visual features in building environments; (3) Initializing 

the 3D sparse reconstruction using an image pair which 

has the maximum matching features inliers after fitting F-

matrix and the minimum matching features inliers after 

fitting a Homography matrix in the RANSAC loop. This 

constraint guarantees a high percentage of overlap and a 

wide baseline for the initial pair. Starting from the initial 

3D reconstruction, the additional locations of the 3D 

points are incrementally calculated. The intrinsic and 

extrinsic parameters of the added cameras are also 

estimated using the Direct Linear Transformation (DLT) 

algorithm within the RANSAC loop [25]; (4) Once each 

camera is added, the camera parameters and the locations 

of the 3D points are finally optimized using bundle 

adjustment algorithm [17]. Here, we use the GPU-based 

sparse bundle adjustment library [18] to minimize the 

computational time. For more detailed process of the SfM 

algorithm, the readers are encouraged to look into [19, 

20]. The outcomes of the GPU-based SfM algorithm are 

sparse 3D point clouds as well as the intrinsic and 

extrinsic digital camera parameters, which are fed into the 

dense 3D reconstruction step using Multi-View Stereo 

(MVS) algorithm [21]. For dense reconstruction, the 

features detected by Harris and Difference-of-Gaussians 

(DoG) operators are first matched across all images, 

returning sparse 2D patches which possibly contain 

several erroneous matches. Then, the expansion and 

filtering processes are iteratively executed to increase the 

density of the sparse 2D patches and eliminate false 

positives using the visibility constraints. The outcome of 

this step is a dense 3D point cloud model which 

represents the as-built conditions of the building under 

inspection. 

The proposed method for 3D thermal modeling builds 

upon our recent research on reconstructing 3D building 

thermal models from unordered collections of thermal 

images [22]. Unlike digital images, infrared thermal 

images typically have low spatial resolutions. The lack of 

distinct features further challenges the application of the 

state-of-the-art feature detection techniques such as SIFT. 

As a result, there is a limitation to directly use the SfM 

algorithm for calculation of the camera parameters from 

 
Figure 1. Overview of the proposed method 
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unordered thermal images. To overcome this, a new 

thermal camera calibration process is first formalized and 

implemented to estimate the intrinsic parameters of the 

thermal camera. To calibrate the camera, we use 

Bouguet’s camera calibration toolbox [23] along with a 

calibration rig. The first step is to extract the grid corners 

of the calibration rig from the imagery. Because the 

thermal cameras are only capable of detecting infrared 

thermal variations emitted by the objects, the corners on 

the grid board cannot be clearly distinguished from the 

thermal imagery. To overcome this issue, we designed 

and put together a thermal calibration rig (550×700mm) 

with 42 small LED lights located on the grid intersections 

(δ=10cm). The LED lights emit enough heat to evidently 

distinguish themselves from the surrounding environment. 

For precise calibration, this increases the accuracy of 

extracting the grid corners from the thermal imagery 

(Figure 2). Before this step, the different temperature 

scales of each thermal image are normalized to a fixed 

range so that the each RGB color values in thermal 

imagery match an absolute temperature value.  

Because we use a single thermal camera which has a 

built-in digital lens for data collection, we can estimate 

the extrinsic parameters of the thermal camera by 

calculating the relative pose of the thermal lens with 

respect to the digital counterpart. The Euclidean 

transformation between the thermal and digital lenses is 

calculated using Nistér’s five point algorithm [24]. The 

location and orientation of each digital camera resulted 

from the GPU-based SfM algorithm is used as the 

baseline for calculation. First, the Essential Matrix is 

estimated by forming the Epipolar geometry between the 

digital and thermal lenses based on the selected five 

corresponding points. Then, the four candidates of the 

relative transformation metrics of the thermal lens with 

respect to the digital lens are recovered from the Singular 

Value Decomposition (SVD) of the Essential Matrix. The 

Cheirality constraint [25], as shown in the following, is 

used to determine the true configuration among the four 

candidates:  

If                     (   )       then 

return Pi and Q 

The selected corresponding points are triangulated 

using the DLT algorithm [25], resulting in reconstruction 

of the point Q in 3D. Here, Q3 and Q4 are the third and 

fourth components of the Homogenous coordinates of  

Q. Based on the extrinsic parameters of the digital camera 

([RD|TD]) and the relative transformation metrics of 

thermal lens with respect to the digital counterpart 

[Rrel|Trel], the extrinsic parameters of thermal camera 

([RT|TT]) are calculated through the following equation: 

[      ]   [                  ] 

Once the thermal camera parameters are estimated, we 

use the same dense 3D reconstruction algorithm that was 

also used for 3D building geometrical modeling. The 

outcome of this step is a dense 3D thermal point cloud 

model of the building under inspection. 

The final step for actual building energy performance 

modeling is to superimpose the generated 3D building 

and thermal point cloud models within a common 3D 

environment and form a 3D spatio-thermal model. Since 

the relative location and orientation of the thermal lens 

with respect to the digital counterpart were used as the 

extrinsic camera parameters for the 3D thermal modeling 

process, both of these models share the same coordinate 

system. Thus, the two models are automatically 

superimposed by carrying the both models into a single 

3D virtual environment, generating the actual 3D spatio-

thermal models. Figure 3 presents experimental results of 

the 3D spatio-thermal modeling on both indoor and 

outdoor built environments. In this figure, from top to 

bottom rows are: unordered digital and thermal imagery, 

the building point cloud models, the thermal point cloud 

models, and finally the integrated visualization of two 

models. The figure is best seen in color.  

4.2 Expected 3D Spatio-Thermal Simulation 

For geometrical modeling and the CFD analysis, we 

use Gambit 2.2.30 and Fluent 6.2.16 respectively. To 

create the 3D geometry, the boundary points (e.g., corners 

of windows) are manually extracted from the generated 

3D dense building point clouds. Using the 3D coordinates  
Figure 2. Thermal camera calibration 

 
Figure 3. 3D spatio-thermal modeling  
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of each selected boundary point, the 3D wireframe model 

is created. The dimensions are calibrated based on the site 

coordinate system. The resulting calibrated 3D domain is 

divided into a series of small discrete mesh volumes 

(Figure 4). The interior surface temperatures resulted 

from EnergyPlus simulation, are fed into the CFD 

analysis as initial environmental boundary conditions. 

Exchanging the complementary data between EnergyPlus 

and CFD simulation can reduce the impact of the 

principal modeling assumptions employed in their 

separate applications, and thus can enable more accurate 

prediction of the building performance [26]. For the 

turbulence modeling, we use the renormalization group 

(RNG)     model [27]. The simulation specific 

parameters (e.g., the numeric convergence tolerances) are 

manually set by the users. Finally, by using Finite-volume 

method and energy conservation equations, the simulation 

is iterated for each 3D mesh element until the results are 

converged. After converging to a solution, the CFD 

analysis delivers the expected 3D spatio-thermal models 

which contain the simulated 3D thermal distribution. 

4.3 Integrated Visualization of Actual and Expected 

Energy Performance 

Overlaying the simulation results on the actual energy 

performance model can facilitate sensing and analyzing 

of the deviations between actual and expected energy 

performance of a building in 3D. For the integrated 

visualization, the display graphics of the CFD model is 

first converted to Virtual Reality Modeling Language 

(VRML) format, enabling export of 3D geometrical 

entities of the simulation results. Since image-based 3D 

reconstructed scenes are up-to-scale, we need to 

transform the actual 3D spatio-thermal models into the 

site coordinate system. To do that, we use the closed-form 

solution of absolute orientation using unit quaternions [28, 

29]. In order to solve 7 DOF problem [3 for translation (T) 

+ 3 for rotation (R) + 1 for uniform scale (s)], users need 

to select a minimum of three points from both the 3D 

spatio-thermal model and the real-world. Estimating the 

accurate registration is approximated with minimization 

of the sum of squared residual errors between the n 

corresponding pairs using the following equation. 

∑‖  ‖
 
  ∑‖     

    (      
 )   ‖

 
 

 

 

 

 

The       
  and      

  denote the two sets of Cartesian 

points from the 3D spatio-thermal model and site 

coordinates respectively. Since the 3D geometry used for 

CFD analysis was also calibrated during the simulation 

process, both actual and expected performance models 

can be automatically superimposed within the same 

coordinate systems. The generated EPAR models along 

with the geo-tagged thermal and digital imagery jointly 

visualize the 3D actual and expected energy performance 

of the building under inspection. 

5. AUTOMATED VISUALIZATION OF 

POTENTIAL PERFORMANCE PROBLEMS 

5.1 3D Mesh Modeling of Actual Thermal 

Performance 

In order to automatically identify deviations between 

the actual and expected energy performance of a building 

in a given space, we compare the measured and simulated 

indoor surface temperatures at the level of 3D points. To 

that end, we first define the following data sets: 

 (  
    

        
 ) denote a set of 3D actual thermal 

points based on the result of the image-based 3D 

reconstruction pipeline.   
     

      
   

encapsulates the 3D location (  
 ) and the color 

(    
 ) of each measured 3D thermal point, and m 

is the number of actual thermal points. Here, each 

RGB color value is corresponding to a fixed 

normalized temperature scale. 

 (  
    

      
 ) denote a set of 3D simulated thermal 

points resulted from the CFD analysis.   
   

  
      

   encapsulates 3D location (  
 ) and color 

(    
 ) of each simulated 3D thermal point. l is the 

number of thermal points in the VRML-based CFD 

model. Each RGB color value is also corresponding 

to a fixed temperature scale. 

Direct comparison of these two datasets is prone to 

error since it is nontrivial to find the closest pairs between 

the actual and simulated thermal points. The actual 3D 

thermal point cloud models typically include large 

numbers of points that do not belong to the building 

geometry itself. Thus, image-based 3D thermal point 

cloud models may not reveal the best representation of 

the actual thermal performance in a given space. To 

overcome this, we generate 3D mesh models of actual 

thermal performance using the VRML-based models as 

the geometrical baselines. Our approach for 3D mesh 

modeling of the actual thermal performance is to find the 

closest point   
  for each   

  and transfer the RGB color 

values of   
  to the corresponding   

 . To find the closest 

points for pairing, the brute-force method is to calculate 

the distance from the query point to every other point in 

the corresponding dataset, sort all the distances in an 

ascending order, and then choose the pair that yields the 

shortest distance. For the significant number of points in a 

cloud, this naïve method requires high computational 

time. To minimize computational time for finding the 

nearest neighbor, we map the points into a k-d tree 

structure. The k-d tree algorithm is an approach for space-

partitioning data structure to organize points in a k-

dimensional space [30]. The trees are used to store spatial 

data in a multi-dimensional space. The k-d trees 

recursively divide the set of points into subsets with half 

of the points of the parent node by using a plane through 

 
Figure 4. Meshing and specifying boundary condition 
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one of the dimensions. The resulting point sets are again 

partitioned into equal halves using planes of a different 

dimension. Partitioning point sets stops after log n levels 

where n is the number of points in the set, and in turn 

each point locates its own leaf cell. Thus, the k-d trees 

hierarchically decompose overall space into a series of 

cells so that no cell contains too many points.  

The nearest neighbor search with the k-d tree algorithm 

can be done efficiently by using these tree properties to 

eliminate a significant portion of the overall search space. 

To implement the nearest neighbor calculation, each tree 

is searched, and the nearest distance is approximately 

estimated at each stage. First, the root node is examined, 

and the sub-domain containing the target query point is 

searched. This process is recursively performed until the 

final minimum sub-domain containing the node is 

searched. Then, the algorithm looks into each parent node, 

and identifies other domain that may include a closer 

point. This process is repeated until all domains are either 

searched or discarded. Once the algorithm fails to find a 

possible closer point, the searching process is terminated 

and yields the nearest neighbor   
 . The RGB color value 

of the resulting nearest neighbor   
  is fed into the 

proposed mesh modeling algorithm. 

5.2 Actual and Simulated Temperature Calculation 

and Comparison 

Once actual and simulated 3D thermal mesh models are 

formed, the actual and simulated surface temperatures of 

a given space (  
  and   

  respectively) are calculated. 

First, the fixed temperature scales of both thermal 

imagery and CFD models (   and    respectively) are 

converted into a fixed range of the corresponding RGB 

color value (      and       respectively). As long 

as the color spectrum is kept the same, this is a one-time 

step and does not need to be repeated for different data 

collections. Next, given the     
  and     

 , we find 

the matching RGB color values in       and      . 
Finally,   

  and   
  are calculated using the following 

equations: 

  
         (     

   )  
           
         

 

  
         (     

   )  
           
         

 

where       and       are the maximum and 

minimum values of thermal imagery temperature scale, 

and similarly       and       are the maximum and 

minimum values of CFD temperature scale.         and 

        indicate the range of each RGB chart converted 

from the temperature scales used for thermal imagery and 

CFD model respectively. 

The final step of the process is to compute the 

deviations of two values and visualize them within the 

EPAR models using the metaphor based on traffic light 

colors. In the proposed method, the 3D actual and 

simulated thermal mesh models share the same coordinate 

system. This is because we used the geometry of VRML-

based CFD models for 3D mesh modeling of the actual 

thermal performance. Thus, by simply computing the 

difference between   
  and   

  for each 3D point from 

the 3D mesh model, we can analyze the indoor surface 

thermal performance deviations. 

6. EXPERIMENTAL RESULTS  

6.1 Experimental Setup and Data Collection 

In order to validate the proposed method, experiments 

were conducted on two indoor locations: an office room 

of an instructional facility during winter (Case #1) and a 

bedroom of a residential building during summer (Case 

#2). The digital and thermal images were captured using a 

FLIR E60 thermal camera which has a built-in digital lens. 

The technical specifications of the thermal camera and 

experimental setups for the CFD simulation are 

summarized in Table 1. 

6.2 Results and Discussion 

Figure 5a and b present 3D building geometrical and 

thermal point cloud models. Figure 5c and d show the 3D 

 
Figure 5. (a) and (b): 3D building and thermal point cloud models, (c): 3D thermal mesh models, (d): VRML-based 

simulated 3D spatio-thermal models (first row: Case #1, second row: Case #2). Figure is best seen in color. 
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mesh models of actual thermal performance and the 

VRML-based CFD models. As observed, even for the 

areas that are sparsely reconstructed, the 3D thermal mesh 

model provides detailed information on the actual thermal 

performance. Figure 6 show the example of a potential 

performance problem which is detected in the residential 

building (Case #2). Small deviations between actual 

measurements and simulation results are typically related 

to the inherent uncertainty in measurement and simulation, 

and thus can be expected. Considering the measurement 

accuracy of the FLIR E60 camera and typical accuracy of 

the CFD simulations for modeling indoor environments, 

the threshold for detection of potential performance 

problems was set to 2°C in these experiments. Based on 

the threshold, the areas with or without potential 

performance problems are color-coded with red and green 

colors respectively. 

For example, figure 6a shows the area with potential 

performance problems (red area). These areas are 

originated from the deviations between the actual (6b) 

and expected (6c) thermal performance of the building. 

Thermal deviations that are above the defined threshold 

provide a feedback to the auditors on what areas require 

additional detailed performance analysis. In our case 

study, although the deviations between the measured and 

simulated temperatures for most areas were below the 

threshold, a few significant thermal deviations were 

observed. Considering the degradation level of the facility 

(built in the beginning of the 1980s), these discrepancies 

may be caused by construction defects or insulation voids. 

Thus, additional diagnostics are required to find the exact 

source of heat loss and their corresponding impact on the 

energy efficiency of the building. Once a registered 

camera is visited in the EPAR models, each camera 

frustum is automatically texture-mapped with the 

corresponding digital and thermal images. The user can 

easily change the viewpoint and select to view a full 

resolution images captured from a particular camera 

location. Figure 6d shows the geo-registered thermal 

image where the problems were observed. Through 2D 

thermographic inspection of the geo-registered thermal 

image in EPAR models, the detected potential 

performance problems can be qualitatively validated. 

Figure 6e shows the geo-registered digital image which is 

depicting the same areas. This represents the building 

semantics of the same areas captured in the thermal 

images. Overall, by (1) minimizing the time and efforts 

required to search for specific thermal images that contain 

performance problems; and (2) figuring out where the 

thermal images are captured from, the proposed method 

can assist with rapid building retrofit decision makings. 

Video demos are found at www.raamac.cee.vt.edu/epar. 

7. CONCLUSIONS 

Reliable and quick identification of energy 

performance problems is a critical step in improving the 

building energy efficiency. To support identification of 

potential performance problems in existing buildings, we 

presented a new approach for automated calculation and 

visualization of deviations between actual and expected 

energy performance of a building based on EPAR models. 

Within the resulting EPAR v2.0 environments, surface 

temperature deviations of buildings can be queried from 

the 3D thermal mesh models and visualized at the level of 

3D points. The proposed method for automated 

 
Figure 6. (a): visualization of a potential performance problem, (b) and (c): 3D thermal mesh model and VRML-based 

CFD model of the same area, (d) and (e): geo-registered thermal and digital imagery. Figure is best seen in color.  

(a) (d) (e)

(b)

19 C 30°C

(c)

22 C 29°C

A potential 

performance 

problem

Table 1. Camera technical data and initial boundary 

conditions for the CFD simulation 

Items Values 

Digital image resolution 2048×1536 Pixels 

Thermal image resolution 320×240 Pixels 

Thermal sensitivity 0.05 °C 

Thermal measurement accuracy 2°C or ±2% of reading 

Turbulence model RNG k-ε model 

Temperature of Inlet Air         

(Case #1: Heating System) 
32 °C 

Temperature of Inlet Air            

(Case #2: Cooling System) 
19 °C 

Wood thermal conductivity 0.13 W/m.K 

Concrete thermal conductivity 0.7 W/m.K 

Glass thermal conductivity 0.96 W/m.K 

Gypsum board thermal 

conductivity 
0.17 W/m.K 
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identification of potential performance problems can 

reduce the time and efforts required to analyze a large 

number of thermal imagery collected from the buildings 

under inspection. Moreover, this method enables building 

auditors to focus more on the other important tasks of 

assessing the observed problems and evaluating possible 

retrofit alternatives. Future works include converting the 

detected performance deviations into potential energy 

loss and the corresponding monetary savings. This can 

further motivate the building owners to renovate their 

facilities by helping them better understand the rate of the 

savings associated with the retrofit. There is also a need 

for identifying reliable thresholds for problem detection 

and eliminating false positives from the detected 

performance problems. The results of our ongoing 

research efforts will be presented in a near future. 
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