Crack detection is essential for inspection of existing structures and crack segmentation based on deep learning is a significant solution. However, datasets are usually one of the key issues. When building a new dataset for deep learning, laborious and time-consuming annotation of a large number of crack images is an obstacle. The aim of this study is to develop an approach that can automatically select a small portion of the most informative crack images from a large pool in order to annotate them, not to label all crack images. An active learning method with difficulty learning mechanism for crack segmentation tasks is proposed. Experiments are carried out on a crack image dataset of a steel box girder, which contains 500 images of 320×320 size for training, 100 for validation, and 190 for testing. In active learning experiments, the 500 images for training are acted as unlabeled image. The acquisition function in our method is compared with traditional acquisition functions, i.e., Query-By-Committee (QBC), Entropy, and Core-set. Further, comparisons are made on four common segmentation networks: U-Net, DeepLabV3, Feature Pyramid Network (FPN), and PSPNet. The results show that when training occurs with 200 (40%) of the most informative crack images that are selected by our method, the four segmentation networks can achieve 92%-95% of the obtained performance when training takes place with 500 (100%) crack images. The acquisition function in our method shows more accurate measurements of informativeness for unlabeled crack images compared to the four traditional acquisition functions at most active learning stages. Our method can select the most informative images for annotation from many unlabeled crack images automatically and accurately. Additionally, the dataset built after selecting 40% of all crack images can support crack segmentation networks that perform more than 92% when all the images are used.
Hyeonwoo Kim;Jiwon Kim;Ji Won Cho;Kwang-Sung Ahn;Dong-Il Park;Sangsoo Kim
Genomics & Informatics
/
v.21
no.3
/
pp.40.1-40.11
/
2023
Microbial community profiling using 16S rRNA amplicon sequencing allows for taxonomic characterization of diverse microorganisms. While amplicon sequence variant (ASV) methods are increasingly favored for their fine-grained resolution of sequence variants, they often discard substantial portions of sequencing reads during quality control, particularly in datasets with large number samples. We present a streamlined pipeline that integrates FastP for read trimming, HmmUFOtu for operational taxonomic units (OTU) clustering, Vsearch for chimera checking, and Kraken2 for taxonomic assignment. To assess the pipeline's performance, we reprocessed two published stool datasets of normal Korean populations: one with 890 and the other with 1,462 independent samples. In the first dataset, HmmUFOtu retained 93.2% of over 104 million read pairs after quality trimming, discarding chimeric or unclassifiable reads, while DADA2, a commonly used ASV method, retained only 44.6% of the reads. Nonetheless, both methods yielded qualitatively similar β-diversity plots. For the second dataset, HmmUFOtu retained 89.2% of read pairs, while DADA2 retained a mere 18.4% of the reads. HmmUFOtu, being a closed-reference clustering method, facilitates merging separately processed datasets, with shared OTUs between the two datasets exhibiting a correlation coefficient of 0.92 in total abundance (log scale). While the first two dimensions of the β-diversity plot exhibited a cohesive mixture of the two datasets, the third dimension revealed the presence of a batch effect. Our comparative evaluation of ASV and OTU methods within this streamlined pipeline provides valuable insights into their performance when processing large-scale microbial 16S rRNA amplicon sequencing data. The strengths of HmmUFOtu and its potential for dataset merging are highlighted.
Journal of information and communication convergence engineering
/
v.20
no.4
/
pp.309-316
/
2022
This investigation is aimed at automatic text summarization on large-scale Vietnamese datasets. Vietnamese articles were collected from newspaper websites and plain text was extracted to build the dataset, that included 1,101,101 documents. Next, a new single-document extractive text summarization model was proposed to evaluate this dataset. In this summary model, the k-means algorithm is used to cluster the sentences of the input document using different text representations, such as BoW (bag-of-words), TF-IDF (term frequency - inverse document frequency), Word2Vec (Word-to-vector), Glove, and FastText. The summary algorithm then uses the trained k-means model to rank the candidate sentences and create a summary with the highest-ranked sentences. The empirical results of the F1-score achieved 51.91% ROUGE-1, 18.77% ROUGE-2 and 29.72% ROUGE-L, compared to 52.33% ROUGE-1, 16.17% ROUGE-2, and 33.09% ROUGE-L performed using a competitive abstractive model. The advantage of the proposed model is that it can perform well with O(n,k,p) = O(n(k+2/p)) + O(nlog2n) + O(np) + O(nk2) + O(k) time complexity.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.59-61
/
2023
본 논문에서는 감정 분류 성능 향상을 위한 초거대 언어모델로부터의 추론 데이터셋 활용 방안을 제안한다. 이 방안은 Google Research의 'Chain of Thought'에서 영감을 받아 이를 적용하였으며, 추론 데이터는 ChatGPT와 같은 초거대 언어 모델로 생성하였다. 본 논문의 목표는 머신러닝 모델이 추론 데이터를 이해하고 적용하는 능력을 활용하여, 감정 분류 작업의 성능을 향상시키는 것이다. 초거대 언어 모델(ChatGPT)로부터 추출한 추론 데이터셋을 활용하여 감정 분류 모델을 훈련하였으며, 이 모델은 감정 분류 작업에서 향상된 성능을 보였다. 이를 통해 추론 데이터셋이 감정 분류에 있어서 큰 가치를 가질 수 있음을 증명하였다. 또한, 이 연구는 기존에 감정 분류 작업에 사용되던 데이터셋만을 활용한 모델과 비교하였을 때, 추론 데이터를 활용한 모델이 더 높은 성능을 보였음을 증명한다. 이 연구를 통해, 적은 비용으로 초거대 언어모델로부터 생성된 추론 데이터셋의 활용 가능성을 보여주고, 감정 분류 작업 성능을 향상시키는 새로운 방법을 제시한다. 제시한 방안은 감정 분류뿐만 아니라 다른 자연어처리 분야에서도 활용될 수 있으며, 더욱 정교한 자연어 이해와 처리가 가능함을 시사한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.11
/
pp.5530-5546
/
2016
Automatic analysis and understanding of human activities is a challenging task in computer vision, especially for the surveillance scenarios which typically contains crowds, complex motions and occlusions. To address these issues, a Bag-of-words representation of videos is developed by leveraging information including crowd positions, motion directions and velocities. We infer the crowd activity in a motion field using Category Constrained Correlated Topic Model (CC-CTM) with latent topics. We represent each video by a mixture of learned motion patterns, and predict the associated activity by training a SVM classifier. The experiment dataset we constructed are from Crowd_PETS09 bench dataset and UCF_Crowds dataset, including 2000 documents. Experimental results demonstrate that accuracy reaches 90%, and the proposed approach outperforms the state-of-the-arts by a large margin.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.12
/
pp.5888-5903
/
2019
The Relational ranking method applies authority-based ranking in relational dataset that can be modeled as graphs considering also their tuples' values. Authority directions from tuples that contain the given keywords and transfer to their corresponding neighboring nodes in accordance with their values and semantic connections. From our previous work, ObjectRank extends to ValueRank that also takes into account the value of tuples in authority transfer flows. In a maked difference from ObjectRank, which only considers authority flows through relationships, it is only valid in the bibliographic databases e.g. DBLP dataset, ValueRank facilitates the estimation of importance for any databases, e.g. trading databases, etc. A relational keyword search paradigm Object Summary (denote as OS) is proposed recently, given a set of keywords, a group of Object Summaries as its query result. An OS is a multilevel-tree data structure, in which node (namely the tuple with keywords) is OS's root node, and the surrounding nodes are the summary of all data on the graph. But, some of these trees have a very large in total number of tuples, size-l OSs are the OS snippets, have also been investigated using ValueRank.We evaluated the real bibliographical dataset and Microsoft business databases to verify of our proposed approach.
Siddique, Kamran;Akhtar, Zahid;Khan, Muhammad Ashfaq;Jung, Yong-Hwan;Kim, Yangwoo
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.8
/
pp.4021-4037
/
2018
In network intrusion detection research, two characteristics are generally considered vital to building efficient intrusion detection systems (IDSs): an optimal feature selection technique and robust classification schemes. However, the emergence of sophisticated network attacks and the advent of big data concepts in intrusion detection domains require two more significant aspects to be addressed: employing an appropriate big data computing framework and utilizing a contemporary dataset to deal with ongoing advancements. As such, we present a comprehensive approach to building an efficient IDS with the aim of strengthening academic anomaly detection research in real-world operational environments. The proposed system has the following four characteristics: (i) it performs optimal feature selection using information gain and branch-and-bound algorithms; (ii) it employs machine learning techniques for classification, namely, Logistic Regression, Naïve Bayes, and Random Forest; (iii) it introduces bulk synchronous parallel processing to handle the computational requirements of large-scale networks; and (iv) it utilizes a real-time contemporary dataset generated by the Information Security Centre of Excellence at the University of Brunswick (ISCX-UNB) to validate its efficacy. Experimental analysis shows the effectiveness of the proposed framework, which is able to achieve high accuracy, low computational cost, and reduced false alarms.
IEMEK Journal of Embedded Systems and Applications
/
v.15
no.4
/
pp.197-204
/
2020
The ImageNet dataset is a large scale dataset and contains various natural scene images. In this paper, we propose a convolutional neural network (CNN)-based weighted ensemble technique for the ImageNet classification task. First, in order to fuse several models, our technique uses weights for each model, unlike the existing average-based ensemble technique. Then we propose an algorithm that automatically finds the coefficients used in later ensemble process. Our algorithm sequentially selects the model with the best performance of the validation set, and then obtains a weight that improves performance when combined with existing selected models. We applied the proposed algorithm to a total of 13 heterogeneous models, and as a result, 5 models were selected. These selected models were combined with weights, and we achieved 3.297% Top-5 error rate on the ImageNet test dataset.
Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.
International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.26-32
/
2023
Hajj is a fundamental pillar of Islam that all Muslims must perform at least once in their lives. However, Umrah can be performed several times yearly, depending on people's abilities. Every year, Muslims from all over the world travel to Saudi Arabia to perform Hajj. Hajj and Umrah pilgrims face multiple issues due to the large volume of people at the same time and place during the event. Therefore, a system is needed to facilitate the people's smooth execution of Hajj and Umrah procedures. Multiple devices are already installed in Makkah, but it would be better to suggest the data architectures with the help of machine learning approaches. The proposed system analyzes the services provided to the pilgrims regarding gender, location, and foreign pilgrims. The proposed system addressed the research problem of analyzing the Hajj pilgrim dataset most effectively. In addition, Visualizations of the proposed method showed the system's performance using data architectures. Machine learning algorithms classify whether male pilgrims are more significant than female pilgrims. Several algorithms were proposed to classify the data, including logistic regression, Naive Bayes, K-nearest neighbors, decision trees, random forests, and XGBoost. The decision tree accuracy value was 62.83%, whereas K-nearest Neighbors had 62.86%; other classifiers have lower accuracy than these. The open-source dataset was analyzed using different data architectures to store the data, and then machine learning approaches were used to classify the dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.