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Abstract 

 
In network intrusion detection research, two characteristics are generally considered vital to 
building efficient intrusion detection systems (IDSs): an optimal feature selection technique 
and robust classification schemes. However, the emergence of sophisticated network attacks 
and the advent of big data concepts in intrusion detection domains require two more 
significant aspects to be addressed: employing an appropriate big data computing framework 
and utilizing a contemporary dataset to deal with ongoing advancements. As such, we present 
a comprehensive approach to building an efficient IDS with the aim of strengthening academic 
anomaly detection research in real-world operational environments. The proposed system has 
the following four characteristics: (i) it performs optimal feature selection using information 
gain and branch-and-bound algorithms; (ii) it employs machine learning techniques for 
classification, namely, Logistic Regression, Naïve Bayes, and Random Forest; (iii) it 
introduces bulk synchronous parallel processing to handle the computational requirements of 
large-scale networks; and (iv) it utilizes a real-time contemporary dataset generated by the 
Information Security Centre of Excellence at the University of Brunswick (ISCX-UNB) to 
validate its efficacy. Experimental analysis shows the effectiveness of the proposed 
framework, which is able to achieve high accuracy, low computational cost, and reduced false 
alarms.  
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1. Introduction 

Networked computer systems are increasingly becoming an integral part of today’s 
information-overloaded modern society. The components which retain our society 
well-functioning and humming, with activities ranging from home shopping transactions to 
multi-billion dollar deals, are all dependent on large-scale networks. Nowadays, almost every 
facet of our daily lives has been significantly integrated with computing devices. Along with 
such technological advancements, a number of contemporary security threats in the digital 
world have also arisen, and therefore, protecting computer systems from various threats has 
become more concerning and important than ever before. Despite the availability of various 
security solutions, such as firewalls, access control systems, patch management, anti-virus, 
and anti-spyware applications, many computer systems are still vulnerable to security attacks 
that may inhibit their functioning, disclose private information, or create data corruption. 
Although these conventional security mechanisms appear as a first line of security defense, 
they are no longer sufficient to cope with the ever-evolving nature of intrusion skills and 
techniques. There is a pressing need to devise more efficient security solutions to make these 
systems tolerant and resistant to sophisticated network attacks [1], [2]. To this end, we have 
developed an intrusion detection framework, which serves as another line of security defense 
meant to mitigate or prevent network attacks.  

The Internet is a global network of millions of interconnected computing devices that 
support the underlay for all computer-mediated activities. It is capable of transporting 
information that scales from a simple binary data to financial transactions and complex, 
real-time multimedia content without issue. Such ease and convenience is resulting with a 
massive increase in the number of Internet users. The Cisco Visual Networking Index has 
recently reported that the current global Internet protocol (IP) traffic is estimated to be 122 
Exabytes (EB) per month and is expected to reach up to 278 EB per month by 2021 [3]. On the 
other side, a significant increase in the number of security attacks has also been noticed. In 
particular, the number of distributed denial-of-service (DDoS) attacks is expected to increase 
up to 3.1 million by 2021 [3]. The explosive growth and subsequent ubiquity of the Internet 
has naturally made networking systems the targets of enemies and criminals. The security of a 
computer system is compromised when it is illegitimately accessed by an individual or a 
program, possibly with plans to disrupt normal activities. In order to ensure security, intrusion 
detection systems (IDSs), especially network IDSs (NIDSs), are currently one of the most 
prominent solutions. A NIDS is often referred to as an anomaly-based intrusion detection 
system or simply an anomaly detection system. Notably, we use these terms interchangeably 
in this paper. A NIDS is a software or hardware component that aims to distinguish malicious 
actions, such as attempts to disrupt the confidentiality, integrity, or availability of a resource 
[4]. A NIDS possesses a significant value in the network security field and is considered a 
second security gate after a firewall. In recent years, network anomaly detection has become a 
major focus for network security researchers.  

Intrusion detection techniques can primarily be classified into two categories based on 
whether the detection mechanism is signature-based (often called misuse-based) or 
anomaly-based. The working flow of both mechanisms is depicted in Fig. 1. Researchers are 
currently concentrating on anomaly-based intrusion detection system due to its ability to 
detect both known and unknown attacks. 
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Fig. 1. Workflow of signature-based and anomaly-based IDSs 

Over the past few years, anomaly detection based on machine learning techniques has 
received considerable attention from researchers. More emphasis has been given to devising 
efficient feature selection schemes and robust classification methods since they are generally 
considered the most vital characteristics for building an efficient IDS. Upon recognition of the 
advent of big data in the anomaly detection domain, researchers have started to deploy 
specialized big data frameworks and attempted to handle computational requirements 
efficiently [5], [6], [7]. Despite their great efforts, there are two significant factors that hinder 
the progress of anomaly detection research and desperately need the attention of the IDS 
research community. They are concerned with the decision to select an appropriate big data 
processing framework and to utilize appropriate datasets for the evaluation of an IDS. Most 
existing anomaly detection research has utilized the mapreduce paradigm and potentially 
outdated Darpa and KDD Cup 99 dataset families [8], [9]. Despite the remarkable qualities of 
mapreduce technology, it is not considered suitable to deploy for intensive iterative 
applications such as real-time traffic monitoring. Regarding performance evaluation of IDSs, 
datasets play a vital role. KDD Cup 99 datasets, the most valuable and innovative resource for 
anomaly detection research, were initially made available in 1998. The extensive use of the 
KDD dataset family, which is almost two decades old, in this modern era is depressing, 
particularly when superior alternatives are widely available [10], [11], [12], [13], [14]. These 
older and flawed dataset families lack big data veracity, modern footprint attacks, and have 
relatively poor quality. It is always vital to evaluate intrusion detection systems using 
appropriate datasets [15]. We therefore emphasize that the process of selecting appropriate 
computing technology and adequate datasets is an equally important and fundamental 
characteristic of developing a state-of-the-art IDS. To address the aforementioned challenges, 
we contribute to the literature by developing an efficient IDS that follows a comprehensive 
approach covering the following four aspects: optimal feature selection, robust classification 
scheme employment, utilization of appropriate big data framework, and usage of 
contemporary datasets to validate the effectiveness of the proposed system. 

The rest of the paper is structured as follows. In the next section, we concisely present the 
background of network intrusion detection and related work. Section 3 presents the proposed 
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system and provides its architectural details. Section 4 presents the implementation and 
evaluation details followed by the conclusion in Section 5. 

2. Background and Related Work 
The idea of automatic intrusion detection was first carried out by James Anderson in 1980 

in a classic paper [16] wherein he introduced a threat classification model to build a security 
monitoring surveillance system based on identifying malicious actions in user behavior.  

An IDS diminishes the threat impact and handles such problems by performing a thorough 
analysis of the network traffic streams. It provides a more comprehensive defense against 
challenging threats and enhances network security. Cryptography and access control, on the 
other hand, are generally more focused on ensuring both confidentiality and integrity. In 
Table 2, we classify IDSs based on three important aspects: the environment they monitor, the 
employed detection approach, and their deployment architecture. We refer the reader to 
Axelsson Stefan [17] for a comprehensive resource on the taxonomy of IDSs.  

Over the last 30 years, extensive research has been conducted to develop efficient NIDSs 
using various techniques, such as statistical methods, combination learners, and soft 
computing, as well as those based on knowledge, classification, and clustering [2], [18]. 
However, an exponential growth of massive data and advancements in networking domains 
has posed many challenges to researchers and practitioners in the field [19], [20]. Research 
efforts are underway to address such issues and challenges by devising techniques using big 
data frameworks, such as the Hadoop [21], Spark [22], and Storm [23] ecosystems. Recently, 
Manzoor et al. [24] proposed an intrusion detection system using support vector machine 
(SVM) to classify incoming network streams as benign or malicious. The authors utilized 
Apache Storm to handle the computational requirements for large-scale networks. It is an open 
source development platform generally used to build real-time big data stream processing 
applications. In this work, the proposed storm topology consists of one spout and three bolts: 
an input reader, the only spout which reads a network packet trace and forwards it to the next 
bolt, a data pre-processor, which is responsible to perform data conversion and normalization 
operations, an SVM algorithm, which performs the classification operations, and the result 
aggregator, which aggregates the classification results and stores them in a file. The authors 
utilized KDD Cup 99 datasets to perform system validation; however, a detailed analysis of 
experimental protocol and some important performance metrics are also missing in this work. 

Kang and Kim [25] proposed a wrapper-based feature selection method to detect network 
anomalies. The authors focused on detection of denial of service attacks in this paper. The 
main idea is based on utilizing the problem of combinatorial optimization and an optimal 
feature selection algorithm. The proposed feature selection algorithm works similar to the 
well-known meta-heuristic algorithms that are widely used to implement combinatorial 
optimization problems. Generally, the accuracy of the final classifier in wrapper-based feature 
selection is used as a cost function during the search process; however, the proposed system 
adopted the approach of clustering accuracy over the training dataset. The k-means clustering 
algorithm has been used to group the training dataset. In order to validate the performance of 
the proposed system, a multi-layer perceptron has been implemented and the overall system 
validation has been performed using NSL_KDD dataset. The proposed system achieved 
considerable detection accuracy; however, it suffers with the problem of the false alarm rate. 
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Table 2. Classification of Intrusion Detection Systems 
Classification 
Aspect IDS Type Description 

Monitoring 
environment 

Host-based (HIDS) 

• Runs on individual hosts or devices on the 
network. 

• Monitors the inbound and outbound network 
streams from the system only and will alert the 
user if suspicious activity is detected. 

NIDS 
• Attempts to identify unauthorized, illicit, and 

anomalous activities based solely on network 
traffic. 

Hybrid • An IDS that utilizes the functions of both HIDS 
and NIDS. 

Detection approach 

Signature-based 

• Refers to the detection of network attacks by 
looking for specific data patterns, such as byte 
sequences in network streams, or known 
malicious instruction sequences used by 
malware. 

• This terminology originates from anti-virus 
applications, which refer to these detected 
patterns as signatures.  

• Although signature-based IDSs can easily 
detect known attacks, it is impossible to detect 
unknown or new attacks, for which no pattern is 
available. 

Anomaly-based 

• Primarily introduced to detect unknown attacks, 
in part due to the rapid development of 
malware. 

• The basic approach is to use machine learning 
to create a model of trustworthy activity and 
then compare new behavior against this model.  

• Although this approach enables the detection of 
previously unknown attacks, it generally suffers 
with generating false alarms; previously 
unknown legitimate action may also be 
classified as malicious. 

Hybrid 

• A system that exploits benefits of both HIDS 
and NIDS. 

• Attempts to detect known as well as unknown 
attacks. 

Deployment 
architecture 

Distributed 

• A distributed IDS consists of several multiple 
intrusion detection subsystems over a 
large-scale network, all of which communicate 
with each other.  

• In addition to its basic functionality, it 
communicates to exchange attack alerts data 
that can be configured to operate in a distributed 
manner, such as an open source system OSSEC.  

Non-distributed • An IDS that can be deployed only at a single 
location such as an open source system Snort. 
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Rathore et al. [7] proposed a real-time intrusion detection framework for ultra-high-speed 
big data environment using the Hadoop framework. The architecture of the proposed IDS 
consists of four layers: traffic capturing, which reads the network traffic; a filtration and load 
balancing server, which performs filtration of the network traces to achieve preliminary flow 
identification using the in-memory database and the load balancing of network traces among 
master and slave nodes using IP addresses; and the processing layer, which is an important part 
of the system composed of various master and data nodes of Hadoop. The authors also briefly 
claimed to have used Apache Spark to attain real-time processing capabilities, but this usage 
has not been justified well. There is also the decision server layer, which performs 
classification tasks using machine learning algorithms such as REPTree, J48, and SVM. The 
system validations were performed using a collection of DARPA, KDD Cup 99, and 
NSL_KDD datasets.  

There are some studies that have utilized the ISCX-UNB dataset to conduct appropriate 
system validation. However, there are still immense demands necessary to make several 
improvements, such as improving accuracy and reducing false alarms [26], [27], [28], [29], 
[30], [31]. Moreover, most studies do not address the important characteristics of NIDS 
research comprehensively, such as specialized feature selection techniques, robust and 
appropriate machine learning classifiers, and handling big data issues in high-speed networks, 
to name a few. We present a comparative outlook of our work with these studies in Section 4. 

3. Proposed Framework 
The architecture of the proposed IDS framework is depicted in Fig. 2. Fundamentally, it 

involves the analysis of network traffic and is compared with the defined baseline, which 
shows the normal behavior of the system on all matching operations. If a mismatch is found, 
the system generates an alert indicating the occurrence of malicious activity. The functionality 
of the proposed system is as follows. 

3.1 Input 
The most fundamental and significant inputs to IDS are network flows in real-time 

environments and recorded network traces, often called datasets or workloads. The type, 
quality, and location where data is collected are the determinant factors in the design and 
effectiveness of an IDS. We believe that the productivity of intrusion detection research is 
largely dependent on the quality of datasets being used in addition to the computational 
techniques involved. Therefore, we decided to use the ISCX-UNB dataset [10] as the input of 
our proposed system for further experimental evaluations. The details of the dataset are given 
in Section 4. 

3.2 Analysis 
This is the core of the proposed framework. It performs an in-depth analysis of the 

network traffic and involves several components, such as data preprocessing, feature ranking 
and selection, BSP-based machine learning classifiers, and attack recognition.  
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Fig. 2. The architecture of the proposed intrusion detection framework 

 
The data preprocessing component is responsible for preprocessing the data involving 

conversion and normalization operations to yield the data for feature ranking as well as 
selection steps. The dataset is composed of assorted types of data, including symbolic and 
numeric representation such as protocolName and totalDestinationpackets, respectively. 
Since classification approaches needs each input data record in the form of real number 
vectors, each symbolic feature is first transformed into a numerical value in this phase. The 
integers from 0 to N – 1 are assigned to each symbolic feature and then each value is linearly 
scaled for the range of [0–1]. After conversion, in order to avoid the biasing factor of features 
with higher values, data normalization is performed. Feature selection in intrusion detection is 
used to eliminate redundant and insignificant data by choosing a subset of features from the 
original available features. The objective is to reduce the feature space according to certain 
criterion to improve the predictive accuracy of classification algorithms. To accomplish this 
task, we first applied the information gain (IG) measure that ranks features using their 
importance, which is followed by the automated branch-and-bound (ABB) technique to obtain 
the optimal feature subset [32]. Information gain evaluates the worth of an attribute as a 
measure with respect to class. It has likelihood of selecting features with high distinguishing 
values and works using the entropy principle, which has been widely applied in the 
information theory domain. In our experiments, we calculate information gain for each class 
attribute using the following probability definitions. 
 

𝑃(𝑐𝑖|𝑋) =  P(ci)P(X|ci)
P(X) ,      (1) 

 
𝑃(𝑋) =  ∑𝑃(𝑐𝑖)𝑃(𝑋|𝑐𝑖)     (2) 

 
where 𝑃(𝑐𝑖)  defines the prior probabilities for all classes i and 𝑃(X|𝑐𝑖)  refers to the 
conditional probabilities of X in class 𝑐𝑖. 

If there are d numbers of classes ci in the data D, and X and p denote the feature and 
partitions, respectively, information gain is obtained using the series of following equations. 
 

𝐼(𝐷) =  −  ∑ 𝑃𝐷𝑑
𝑖=1 (𝑐𝑖)𝑙𝑜𝑔2𝑃𝐷(𝑐𝑖),   (3) 

 
where the information for Dj owing to partition D at X is estimated as 
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    𝐼�𝐷𝑗𝑋� =  −  ∑ 𝑃𝐷𝑗𝑋

𝑑
𝑖=1 (𝑐𝑖)𝑙𝑜𝑔2𝑃𝐷𝑗𝑋(𝑐𝑖),   (4)

    
and for the feature X, the information gain is computed as follows: 
 
    𝐼𝐺(𝑋) = 𝐼(𝐷) −  ∑

|𝐷𝑗|
|𝐷|

𝑝
𝑗=1 𝐼�𝐷𝑗𝑋�,   (5) 

 
where |D| is the number of instances in D and               represent the prior probabilities for the 
data D estimated by   

The process of IG evaluation and feature selection using the ABB technique is listed in 
Algorithms 1 and 2, respectively. There are a total of 18 features in the ISCX-UNB dataset and 
Algorithm 1 was first used to rank the features prior to selecting the optimal set of features. 
Table 2 shows the details of all features along with the values of the corresponding IG 
measure in a decreasing order while Fig. 3 gives a graphical representation of the IG measures 
in the order given by the original dataset. 
 

Algorithm 1: Feature ranking algorithm using information gain 
Input: D – A train dataset with all features Xi, i=1,2,3…N 
Output: Features ranked by information gain 
1: initialize empty list L 
2: do 
3:   compute IG(Xi);   /* via equation (5) */ 
4:   add Xi with L in descending order w.r.t. IG(Xi);  
5: while (i=1 to N); 
6: Return L  

 
 

Algorithm 2: ABB feature selection algorithm 

Input: S – A training dataset D with all features Xi   
where i=1,2,3…N 
            Q – An empty queue, S1, S2 – temporary subsets 
            U – Evaluation measure (inconsistency) 
Output: A selected feature subset S 
1: initialize L = {S} 
2: α = U(S2, D) 
3: ABB(S, D)  /* Automated branch-and-bound function  
4:                          reading all features in data D */ 
5: do 
6:   S1 = S – X; 
7:   add S1 to Q; 
8:   while Q is NOT empty 
9:      S2 = delete from Q; 
10:      if (S2 is valid & U(S2, D) <= α) 
11:       Append S2 in L; 
12:     ABB(S2, D) 
13: while (i=1 to N); 
14: Return the minimum subset;  
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Table 2. The information gain measure for all features 
S. No. Feature Rank Feature Name Information Gain 

1 f4 totalDestinationPackets 0.928912 
2 f5 totalSourcePackets 0.822597 
3 f9 Direction 0.807751 
4 f12 Source 0.782945 
5 f13 protocolName 0.581982 
6 f15 Destination 0.441058 
7 f17 startDateTime 0.422889 
8 f18 stopDateTime 0.365589 
9 F16 destinationPort 0.306328 
10 F14 sourcePort 0.303309 
11 f3 totalDestinationBytes 0.297390 
12 f2 totalSourceBytes 0.278352 
13 f7 destinationPayloadAsBase64 0.269263 
14 f6 sourcePayloadAsBase64 0.060201 
15 f8 destinationPayloadAsUTF 0.055125 
16 f11 destinationTCPFlagsDescription 0.050177 
17 f10 sourceTCPFlagsDescription 0.041616 
18 f1 appName 0.024322 

 

 
Fig. 3. Information gain measure for each feature 

 
Once the features are ranked, the ABB algorithm is employed to find the optimal feature 

subset using the inconsistency rate U as an evaluation measure. The process for calculating U 
over a given dataset D may be defined in a series of three steps. Step I: two instances of the 
feature set are considered to be inconsistent if they have the same values but different class 
labels; for example, if the two instances have the values 011100001 and 011100000, they 
represent the same data for all attributes except their class labels (i.e., 1 and 0). Step II: 
subtracting the largest number of instances of different class labels yields inconsistency count 
from the total number of matching instances. For example, if there are n matching instances 
and C1 and C2 denote the number of instances for given class labels, then if C2 is greater than 
C1, the inconsistency count will be n - C2 or vice versa. Step III: ratio between ‘sum of 
inconsistency counts’ and ‘total number of instances’ produces the inconsistency rate. The 
irrelevant and redundant features can be removed effectively by using inconsistency as an 



4030                                  Siddique et al.: Developing an Intrusion Detection Framework for High-Speed Big Data Networks: 
A Comprehensive Approach 

evaluation measure in an ABB algorithm. Contrary to branch-and-bound conventional 
algorithms, ABB estimates bounds automatically. Given a set of features, this algorithm 
removes one feature at a time via a breath-first search technique until it reaches the base 
criteria. The process is as follows. Each node acts as a subset of features for a legitimacy test to 
certify that an execution is valid such that if ‘Hamming distance (node being visited, a pruned 
node) ~= 1’, then it is legitimate. Under each iteration, one feature, whose time complexity is 
O(N), is dropped; here, N is the number of features. Therefore, to complete the process, m 
iterations are required, which leads to an overall time complexity of ABB to O(mN). The 
maximum number of children m that a node can have is always smaller than N. The combined 
outcomes of Algorithms 1 and 2 yield the best feature subset for classification mechanisms, 
namely, totalDestinationPackets, totalSourcePackets, direction, source, protocolName, 
destination, startDateTime, and stopDateTime. 

It is well-documented in machine learning literature that the choice of classification 
schemes majorly affects the overall performance of the system even if an optimal set of 
features is used. During the testing phase, classification is a process in which the system 
predicts true class label(s) for a given unseen set of features. Various algorithms have been 
proposed to devise highly effective anomaly detection systems. It is worth noting that the 
incorrect selection of a classification algorithm may cause high false alarms and high 
computational costs [15]. The optimal choice of classification is still an open issue in the 
intrusion detection domain. The tactful amalgamation of feature extraction techniques and 
classification schemes may produce better IDS. To this aim, in this study, we implemented 
Logistic Regression (LR), Naïve Bayes (NB), and Random Forest (RF) techniques to classify 
network traffic [33]. They have been chosen based on the overall performance of the system. 
Moreover, they are both pliable to implement and capable of updating their execution 
approaches by incorporating new information. Once an optimal subset of features is obtained, 
it is used as the input for the classifier-training phase, where we employed three efficient 
machine-learning classification techniques, as given below.  

Logistic is a ridge estimator based classifier that is well-suited to deploy for two-class 
classification problems [34]. The relationship between binary outcomes and independent 
variables is calculated using a binary logistic model’s probability. Specifically, the existence 
(1) or nonexistence (0) of a specific attribute or outcome in general is described by binary 
outcomes, which find the existence of a specific activity y in a given feature set x. For instance, 
y is assigned a value of 1 if a certain activity is present and is otherwise 0. For the anomaly 
detection system, the network traffic flow whether malicious or normal is depicted by the 
value of y. In anomaly detection, every record/flow is given a probability that is then utilized 
to decide whether it is anomalous or benign. A logistic curve is generated by the model such 
that posterior probabilities lie between 0 and 1, which causes simple linear regression schemes 
to be ineffective since they have inherent attribute of allowing the dependent variable to 
proceed these limits and produce inconsistent results. During the training phase, the classifier 
is trained using the selected subset of features on a training database. The test data is fed to the 
stored trained model to detect intrusions. The trace matching operation treats normal class as 
normal data, whereas others as intrusive attacks. 

The NB classifier is a well-known supervised learning technique for classification 
problems [35]. It has shown efficacy in diverse fields of applications ranging from image 
classification to disease predictions [36], [37].  NB depends on Bayesian theorem, which is 
very practical for high dimensionality inputs and large datasets. In spite of its simplicity, an 
NB classification scheme can usually outperform more sophisticated classification algorithms. 
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It is a construction classifier, an algorithm that is used to attribute class labels to problem 
instances. The main assumption of the NB classification method is independence; it assumes 
that all features are independent and that the presence of a feature in a class has no relation 
with the presence of any other feature in same class such that correlations between all 
considered features in a given study are unrelated or ignored.  

 The RF classification scheme is an ensemble learning method based on decision trees, 
which are used both for classification and regression [38], [39], [40]. RFs are a combination of 
tree predictors where every tree relies on estimations of a random vector tested autonomously. 
The same distribution is applied to all trees in the forest. Compared to other bagging 
techniques, in RF, at every fundamental classification tree hub, an arbitrary indicator factors 
subset is employed as the variable to determine the split. During the training process, RF 
makes multiple classifications and regression trees prepared using a bootstrapped test of 
training samples and inquiries using only a randomly selected subset of the input variables to 
estimate a split for every node. Gini index of node impurity is utilized for computing splits in 
the predictor variables. During the testing/classification process, every node/tree gives a unit 
vote on the most popular class for the input. The majority vote is used to obtain the outcome of 
the classifier. RF is generally selected over other tree-based methods because it is very 
effective with noise and does not over-fit. Since the trees in RF are not pruned, the 
computational many-sided quality is decreased, which allows RF to deal with high 
dimensional features and data using only a considerable number of trees in the ensemble. 

Once the classifiers are trained using the selected subset of features, the stored trained 
classifier can then be employed to detect normal and intrusive data. The test data is then 
transported to the saved trained model to detect intrusions. The traces matching the normal 
class are treated as normal data while the others are reported as intrusive activities. 

3.3 Output 
The final phase of the presented framework is similar to the output component of the 

traditional system. It is responsible for presenting the processed data in a usable format. In 
other words, it largely interfaces with the user and generates alerts. 

4. Experimental Evaluation 
Considering the significance of using appropriate datasets to evaluate IDSs, as mentioned 

above in this paper, we utilized ISCX-UNB datasets [10] rather than following the traditional 
approach and using the legacy KDD dataset family. The dataset was collected in a week with 
practical and systematic situations reflecting network traffic and intrusions. Specifically, the 
dataset is labeled for normal and malicious flows for a total of 2,381,532 and 68,792 records in 
each respective category. Additionally, a variety of multi-stage attack scenarios were 
performed to produce malicious traces (e.g., infiltration from the inside, HTTP, DoS, DDoS 
via an Internet Relay Chat (IRC) botnet, and brute force Secure Shell (SSH)). The train and 
test dataset distributions utilized in this study is presented in Table 3. 

The experiments were performed on an Intel core i7-6500U CPU @2.5 GHz with a 512 
GB SSD and 8 GB RAM with Apache Hama [41], [42] version 0.7.1 installed on Ubuntu 
12.04. To demonstrate the efficacy of presented framework in this study, we used standard 
performance metrics namely, accuracy, detection rate (DR), and false positive rate (FPR) [43]. 
The overall performance of the system is promising, as shown in Tables 4 and 5 and Fig. 4.  
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Table 3. Distribution of training and testing datasets 
Dataset/Network 
Flows 

No. of 
Features 

Training Testing 

Benign Malicious Benign Malicious 

ISCX-UNB-SAT 8 85,222 1,353 45,889 1,353 

ISCX-UNB-MON 8 108,945 2,451 58,664 1,320 

ISCX-UNB-TUE 8 347,308 24,295 187,012 13,083 

ISCX-UNB-WED 8 339,470 0 182,793 0 

ISCX-UNB-THU 8 255,054 3,381 137,338 1,822 

 
 

Table 4. Performance results of the proposed framework  

Network Flows 
LR NB RF 

DR FPR Accuracy DR FPR Accuracy DR FPR Accuracy 

ISCX-UNB-SAT 98.09 0.18 99.15 97.25 0.71 98.12 99.21 0.12 99.65 

ISCX-UNB-MON 99.39 0.58 99.53 98.50 0.28 97.95 98.86 0.31 99.38 

ISCX-UNB-TUE 98.56 0.67 98.99 95.96 0.54 97.86 99.45 0.34 99.71 

ISCX-UNB-WED 99.11 0.45 99.26 92.31 0.41 96.45 99.62 0.51 99.72 

ISCX-UNB-THU 99.23 0.39 99.44 94.28 0.34 97.43 99.43 0.20 99.69 

 
 

 
Fig. 4. Training time taken by the machine learning classifiers 

 
Several observations may be extracted from Table 4 and Fig. 4. First, the proposed 

framework presents high potential as a simple, unconstrained, implicit method for anomaly 
detection with great recognition accuracy for diverse, practical in-the-wild network flow 
traffics. Second, the error rates decrease as number of packets goes from low to high. Third, it  
is evident that the RF classifier performs better than both LR and NB because RF is capable of 
decreasing variances and norming out the biases and most unlikely overfitting. Finally, LR 
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performed in DR was accurate compared to NB owing to LR’s one of main features, which is 
that the independent variables do not necessarily have to be normally distributed, while NB 
assumes that all attributes are independent (i.e., no correlation between variables), and it is 
well-documented that correlation mapping is beneficial for attaining better accuracy. In 
addition, NB also assumes that the samples follow a Gaussian distribution, which is usually 
true for small datasets. However, network intrusion detection databases are heterogeneous and 
contain different attack types and sizes, and thereby NB either is overfitted or could not handle 
the concept-drift issue. Regarding the time efficiency of the proposed system, we used training 
time as an evaluation metric in reference to the time taken to build the training model. Fig. 4 
illustrates the time taken by each machine learning classifier for a range of network packets. 
We can notice that the time taken by each classifier is promising; however, RF outperforms 
others, achieving 143 s for 120,000 network packets. Hence, the presented scheme is capable 
in respect of low computational cost in addition to assuring attack detection accuracy.  

Table 5 compares our results with existing solutions for the ISCX-UNB dataset. This 
dataset was generated much later than the DARPA and KDD dataset family, so there are 
relatively fewer corresponding experimental results available [9]. Based on the available 
evaluation results for the compared methods, the best results for each study have been selected 
in terms of accuracy and false alarms. It is easy to see that the proposed system performs better 
both in terms of accuracy and false alarms compared to state-of-the-art methods. This is 
mainly because of the efficient feature selection technique we used and the implementation of 
appropriate machine learning classifiers. It is worth noticing that the comparisons are for 
reference only as many researchers have used different proportions of traffic types and dataset 
distributions, preprocessing techniques, and sampling methods. Therefore, a straightforward 
comparison for some metrics, such as training and testing time, is generally not considered 
suitable [43]. Although our approach achieved better performance for the considered 
evaluation metrics, it cannot be claimed that the proposed solution completely outperformed 
other methods. Nevertheless, we assert that one can obtain a noteworthy level of security and 
convenience against intrusion attacks using the proposed technique, which is simple, fast, 
effective, and highly suitable for real-time applications as well. 

 
Table 5. Comparison with existing solutions using ISCX-UNB dataset 

Authors Algorithm(s) or 

Technique 

Accuracy or  

DR (%) 

False Alarms 

(%) 

Kakavand et al. [26] PCA 97.0 1.2 
Kumar et al. [27] AMGA2-NB 94.5 7.0 
Yassin et al. [28] KMC+NBC 99.0 2.2 
Tahir et al. [29] KMC-D+NBC 99.5 1.2 
Tan et al. [30] MCA+EMD 90.12 7.92 
Sally et al. [31] PLL+NGL 95.31 0.80 
Proposed solution RFF+ABB 99.72 0.51 

5. Conclusion 
In this paper, we followed a comprehensive approach to develop an efficient IDS with 

emphasis on tackling big data problems in large-scale networks. In order to cope with the 
challenges, which are mainly caused by the volume, velocity, variety, and veracity of the 



4034                                  Siddique et al.: Developing an Intrusion Detection Framework for High-Speed Big Data Networks: 
A Comprehensive Approach 

workloads, the proposed system incorporated a powerful bulk synchronous parallel computing 
engine that was capable of handling a large volume of network traffic in real-time 
environments. Our approach is also novel in utilizing the ABB technique to select optimal 
feature subsets and performing classification tasks using efficient machine learning techniques. 
We also highlighted the role and significance of using appropriate datasets, which is greatly 
lacking in existing studies. The experimental results for the contemporary dataset verify the 
accuracy and efficiency of the proposed system.  

We believe that the proposed approach can also be customized for other domains, such as 
anomaly detection in image data, streaming anomaly detection, and detecting intrusions in 
time series data, since these have very peculiar characteristics and our proposed framework 
can be a suitable solution with some customization. This work could also be extended to 
devising more novel NIDSs solutions for more generalized systems and to develop 
cross-dataset methods, which have not received much attention in the field of network 
anomaly detection, i.e., a process in which a system is being trained on one dataset and tested 
on another. This may provide an additional method of evaluating the interoperability and 
generalization capability of an IDS. 
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