DOI QR코드

DOI QR Code

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Cherezov, Alexey (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Dzianisau, Siarhei (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Deokjung (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2020.09.29
  • Accepted : 2021.05.28
  • Published : 2021.11.25

Abstract

Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government (MOTIE) (20206510100040)

References

  1. I. Bose, R.K. Mahapatra, Business data mining - a machine learning perspective, Inf. Manag. 39 (2001) 211-225. https://doi.org/10.1016/S0378-7206(01)00091-X
  2. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (1998) 2278-2324. https://doi.org/10.1109/5.726791
  3. W. Huang, Y. Nakamori, S.Y. Wang, Forecasting stock market movement direction with support vector machine, Comput. Oper. Res. 32 (2005) 2513-2522. https://doi.org/10.1016/j.cor.2004.03.016
  4. J.R. Dorronsoro, F. Ginel, C. Sanchez, C.S. Cruz, Neural fraud detection in credit card operations, IEEE Trans. Neural Network. 8 (1997) 827-834. https://doi.org/10.1109/72.595879
  5. A. Hsu, B. Cheng, P.A. Bradley, Analysis of NIF scaling using physics informed machine learning, Phys. Plasmas 27 (2020), 012703. https://doi.org/10.1063/1.5130585
  6. P. Sadowski, Deep Learning for Experimental Physics, (PhD Thesis), University of California, Irvine, 2016.
  7. T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, N. Khovanova, Machine learning for predictive modelling based on small data in biomedical engineering, IFAC-Papers Online 48 (2015) 469-474.
  8. M. Sabatino, M. Fabiani, M. Bozovic, S. Garzoli, L. Antonini, M.E. Marcocci, A.T. Palamara, G. De Chiara, R. Ragno, R. Experimental data based machine learning classification models with predictive ability to select in vitro active antiviral and non-toxic essential oils, Molecules 25 (2020) 2452. https://doi.org/10.3390/molecules25102452
  9. Z. Ceylan, B. Sungur, Estimation of coal elemental composition from proximate analysis using machine learning techniques, Energy Sources, Part A Recovery, Util. Environ. Eff. 38 (2020) 1-11.
  10. J. Hoffmann, Y. Bar-Sinai, L.M. Lee, J. Andrejevic, S. Mishra, S.M. Rubinstein, C.H. Rycroft, Machine learning in a data-limited regime: augmenting experiments with synthetic data uncovers order in crumpled sheets, Sci. Adv. 5 (2019), eaau6792. https://doi.org/10.1126/sciadv.aau6792
  11. A. Smith, A. Keane, J.A. Dumesic, G.W. Huber, V.M. Zavala, A machine learning framework for the analysis and prediction of catalytic activity from experimental data, Appl. Catal. B Environ. 263 (2020) 118257. https://doi.org/10.1016/j.apcatb.2019.118257
  12. P. Grechanuk, M.E. Rising, T.S. Palmer, Using machine learning methods to predict bias in nuclear criticality safety, J. of Comput. Theoretical Transport 47 (2018) 552-565. https://doi.org/10.1080/23324309.2019.1585877
  13. M.G. Fernandez, A. Tokuhiro, K. Welter, Q. Wu, Nuclear energy system's behavior and decision making using machine learning, Nucl. Eng. Des. 324 (2017) 27-34. https://doi.org/10.1016/j.nucengdes.2017.08.020
  14. J.J. Ortiz, A. Castillo, J.L. Montes, R. Perusquia, J.L. Hernandez, Nuclear fuel lattice optimization using neural networks and a fuzzy logic system, Nucl. Sci. Eng. 162 (2009) 148-157. https://doi.org/10.13182/NSE162-148
  15. A. Pirouzmand, M.K. Dehdashti, Estimation of relative power distribution and power peaking factor in a VVER-1000 reactor core using artificial neural networks, Prog. Nucl. Energy 85 (2015) 17-27. https://doi.org/10.1016/j.pnucene.2015.06.001
  16. K. Trontl, D. Pevec, T. Smuc, Machine Learning of the reactor core loading pattern critical parameters, Sci. Tech. Nuc. Install. 2008 (2008) 695153.
  17. I.H. Bae, M.G. Na, Y.J. Lee, G.C. Park, Calculation of the power peaking factor in a nuclear reactor using support vector regression models, Ann. Nucl. Energy 35 (2008) 2200-2205. https://doi.org/10.1016/j.anucene.2008.09.004
  18. F. Khoshahval, S. Yum, H.C. Shin, J. Choe, P. Zhang, D. Lee, Smart sensing of the axial power and offset in NPPs using GMDH method, Ann. Nucl. Energy 121 (2018) 77-88. https://doi.org/10.1016/j.anucene.2018.07.007
  19. M.G. Park, H.C. Shin, Reactor power shape synthesis using group method of data handling, Ann. Nucl. Energy 72 (2014) 467-470. https://doi.org/10.1016/j.anucene.2014.06.010
  20. M.I. Radaideh, T. Kozlowski, Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling, Int. J. Energy Res. 43 (2019) 7866-7890. https://doi.org/10.1002/er.4698
  21. E. Nissan, An overview of AI methods for in-core fuel management: tools for the automatic design of nuclear reactor core configurations for fuel reload, (re)arranging new and partly spent fuel, Design 3 (2020) 37. https://doi.org/10.3390/designs3030037
  22. I.C. Gauld, G. Ilas, B.D. Murphy, C.F. Weber, Validation of SCALE 5 Decay Heat Predictions for LWR Spent Nuclear Fuel, US Nuclear Regulatory Commission, Technical Report, 2010. NUREG/CR-6972.
  23. SKB, Measurements of Decay Heat in Spent Nuclear Fuel at Swedish Interim Storage Facilit, in: Y, CLAB. Svensk Karnbranslehantering AB (SKB), Swedish Nuclear Fuel and Waste Management Co., 2006, pp. R-05-62.
  24. B.D. Murphy, I.C. Gauld, Spent Fuel Decay Heat Measurements Performed at the Swedish Central Interim Storage Facility, US Nuclear Regulatory Commission, Technical Report, 2010. NUREG/CR-6971.
  25. G. Ilas, I.C. Gauld, H. Liljenfeldt, Validation of ORIGEN for LWR used fuel decay heat analysis with SCALE, Nucl. Eng. Des. 273 (2014) 58-67. https://doi.org/10.1016/j.nucengdes.2014.02.026
  26. G. Ilas, I.C. Gauld, SCALE analysis of CLAB decay heat measurements for LWR spent fuel assemblies, Ann. Nucl. Energy 35 (2008) 37-48. https://doi.org/10.1016/j.anucene.2007.05.017
  27. P. Jansson, A. Hakansson, A. Backlin, S. Jacobsson, Gamma ray spectroscopy measurements of decay heat in spent nuclear fuel, Nucl. Sci. Eng. 141 (2002) 129-139. https://doi.org/10.13182/nse02-a2272
  28. O. Osifo, S.J. Svard, A. Hakansson, C. Willman, A. Backlin, T. Lundqvist, Verification and determination of the decay heat in spent PWR fuel by means of gamma scanning, Nucl. Sci. Eng. 160 (2008) 129-143. https://doi.org/10.13182/NSE160-129TN
  29. R.W. Mills, Decay heat calculations a study of their validation and accuracy, in: 2nd International Workshop on Nuclear Data Evaluation for Reactor (WONDER 2009), Cadarache, France, 2009, p. 152. September 29 - October 2.
  30. J.J. Faraway, Practical regression and anova using R, pp. 117, 118. Available at: https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf. (Accessed 27 August 2020).
  31. G. Ilas, H. Liljenfeldt, Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties, Nucl. Eng. Des. 319 (2017) 176-184. https://doi.org/10.1016/j.nucengdes.2017.05.009
  32. B. Ebiwonjumi, C. Kong, P. Zhang, C. Alexey, D. Lee, Uncertainty quantification of PWR Spent Fuel due to nuclear data and modeling parameters, Nucl. Eng. Tech. (2021), https://doi.org/10.1016/j.net.2020.07.012 article in press.
  33. B. Nowok, G. Raab, C. Dibben, Synthpop: bespoke creation of synthetic data in R, J. Stat. Software 74 (2016) 1-26.
  34. H. Ping, J. Stoyanovich, B. Howe, DataSynthesizer: privacy-preserving synthetic datasets, in: 29th International Conference on Scientific and Statistical Database Management, June 27-29, 2017. Chicago, IL, USA.
  35. D.A. Van Dyk, X.L. Meng, The art of data augmentation, J. Comput. Graph Stat. 10 (2012) 1-50. https://doi.org/10.1198/10618600152418584
  36. N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321-357. https://doi.org/10.1613/jair.953
  37. T.R. Willemain, R.A. Bress, L.S. Halleck, Enhanced simulation inference using bootstraps of historical inputs, IIE Trans. 35 (2003) 851-862. https://doi.org/10.1080/07408170304404
  38. C. Willman, A. Hakansson, O. Osifo, A. Backlin, S.J. Svard, Nondestructive assay of spent nuclear fuel with gamma-ray spectroscopy, Ann. Nucl. Energy 33 (2006) 427-438. https://doi.org/10.1016/j.anucene.2005.12.005
  39. OECD/NEA, Evaluation Guide for the Evaluated Spent Nuclear Fuel Assay Database (SFCOMPO), Organization for Economic Cooperation and Development, Nuclear Energy Agency, Nuclear Science Committee, Working Party on Nuclear Criticality Safety, NEA/NSC/R, 2016, p. 8 (2015).
  40. C.M. Bishop, Training with noise is equivalent to Tikhonov regularization, Neural Comput. 7 (1995) 108-116. https://doi.org/10.1162/neco.1995.7.1.108
  41. G. An, The effects of adding noise during backpropagation training on a generalization performance, Neural Comput. 8 (1996) 643-674. https://doi.org/10.1162/neco.1996.8.3.643
  42. S.S. Lee, Noisy replication in skewed binary classification, Comput. Stat. Data Anal. 34 (2000) 165-191. https://doi.org/10.1016/S0167-9473(99)00095-X
  43. J. Yang, X. Yu, Z.Q. Xie, J.P. Zhang, A novel virtual sample generation method based on Gaussian distribution, Knowl. Base Syst. 24 (2011) 740-748. https://doi.org/10.1016/j.knosys.2010.12.010
  44. H. Surendra, H.S. Mohan, A review of synthetic data generation methods for privacy preserving data publishing, Int. J. Sci. Tech. Res. 6 (2017) 95-101.
  45. S. Choi, C. Lee, D. Lee, Resonance treatment using pin-based pointwise energy slowing-down method, J. Comput. Phys. 330 (2017) 137-155.
  46. C. Lataniotis, D. Wicaksono, S. Marelli, B. Sudret, UQLab User Manual - Kriging (Gaussian Process Modeling), Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzerland, 2019. Report # UQLab-V1.3-105.
  47. M. Moustapha, C. Lataniotis, S. Marelli, B. Sudret, UQLab User Manual - Support Vector Machines for Regression, Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzerland, 2019. Report # UQLab-V1.3-111.
  48. M.H. Beale, M.T. Hagan, H.B. Denmuth, Deep Learning Toolbox User's Guide, The MathWorks, Inc., 2018.
  49. S. Marelli, B. Surety, UQLab: a framework for uncertainty quantification in MATLAB, in: 2nd International Conference on Vulnerability, Risk Analysis and Management, July 13-16, 2014. Liverpool, United Kingdom.
  50. B. Ebiwonjumi, D. Lee, Bayesian method and polynomial chaos expansion based inverse uncertainty quantification of spent fuel using decay heat measurements, Nucl. Eng. Des. 378 (2021) 11158.
  51. S. Vaccaro, S.J. Tobin, A. Favalli, B. Grogan, P. Jansson, H. Liljenfeldt, V. Mozin, J. Hu, P. Schwalbach, A. Sjoland, H. Trellue, D. Vo, PWR and BWR spent fuel assembly gamma spectra measurements, Nucl. Instrum. Methods Phys. Res. A 833 (2016) 208-225. https://doi.org/10.1016/j.nima.2016.07.032
  52. T. Shaikhina, N. Khovanova, Handling limited datasets with neural networks in medical applications: a small-data approach, Artif. Intell. Med. 75 (2017) 51-63. https://doi.org/10.1016/j.artmed.2016.12.003
  53. P. Cunningham, J. Carney, S. Jacob, Stability problems with artificial neural networks and the ensemble solution, Artif. Intell. Med. 20 (2000) 217-225. https://doi.org/10.1016/S0933-3657(00)00065-8
  54. S. Alfeo, H. Laurie, B. Vivek, J.S. Karen, Overcoming small data limitations in heart disease prediction by using surrogate data, SMU Data Science Review 1 (3) (2018), 12. Available at: https://scholar.smu.edu/datasciencereview/vol1/iss3/12. (Accessed 15 July 2020).