• 제목/요약/키워드: large amplitude oscillatory shear flow

검색결과 18건 처리시간 0.026초

진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동 (Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields)

  • 송기원;장갑식
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권1호
    • /
    • pp.31-38
    • /
    • 2006
  • Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

안티푸라민-에스® 로션의 레올로지 특성 연구 (Rheological Properties of Antiphlamine-S® Lotion)

  • 국화윤;송기원
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권3호
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

Large amplitude oscillatory shear behavior of the network model for associating polymeric systems

  • Ahn, Kyung-Hyun;Kim, Seung-Ha;Sim, Hoon-Goo;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제14권2호
    • /
    • pp.49-55
    • /
    • 2002
  • To understand the large amplitude oscillatory shear (LAOS) behavior of complex fluids, we have investigated the flow behavior of a network model in the LAOS environment. We applied the LAOS flow to the model proposed by Vaccaro and Marrucci (2000), which was originally developed to describe the system of associating telechelic polymers. The model was found to predict at least three different types of LAOS behavior; strain thinning (G' and G" decreasing), strong strain overshoot (G' and G" increasing followed by decreasing), and weak strain overshoot (G' decreasing, G" increasing followed by decreasing). The overshoot behavior in the strain sweep test, which il often observed in some complex fluid systems with little explanation, could be explained in terms of the model parameters, or in terms of the overall balance between the creation and loss rates of the network junctions, which are continually created and destroyed due to thermal and flow energy. This model does not predict strain hardening behavior because of the finitely extensible nonlinear elastic (FENE) type nonlinear effect of loss rate. However, the model predicts the LAOS behavior of most of the complex fluids observed in the experiments.he experiments.

맥동유동하에 있는 유연성 있는 평판 사이의 벽면전단응력: 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향 (Wall Shear Stress Between Compliant Plates Under Oscillatory Flow Conditions: Influence of Wall Motion, Impedance Phase Angle and Non-Newtonian Fluid)

  • 최주환;이종선;김찬중
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.18-28
    • /
    • 2001
  • The present study investigates flow dynamics between two dimensional compliant plates under sinusoidal flow conditions in order to understand influence of wall motion, impedance phase angle (time delay between pressure and flow waveforms), and non-Newtonian fluid on wall shear stress using computational fluid dynamics. The results showed that wall motion induced additional terms in the streamwise velocity profile and the pressure gradient. These additional terms due to wall motion reduced the amplitude of wall shear stress and also changed the mean wall shear stress. The trend of the changes was very different depending on the impedance phase angle. As the impedance phase angle was changed to more negative values, the mean wall shear stress decreased while the amplitude of wall shear stress increased. As the phase angle was reduced from 0°to -90°under $\pm$4% wall motion, the mean wall shear stress decreased by 12% and the amplitude of wall shear stress increased by 9%. Therefore, for hypertensive patients who have large negative phase angles, the ratio of amplitude and mean of the wall shear stress is raised resulting in a more vulnerable state to atherosclerosis according to the low and oscillatory shear stress theory. We also found that non-Newtonian characteristics of the blood protect atherosclerosis by decreasing the oscillatory shear index.

Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • 제19권1호
    • /
    • pp.35-42
    • /
    • 2007
  • The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes $4.6\;{\mu}m\;and\;80{\mu}m$ at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the $1^{st}\;and\;3^{rd}$ harmonics ($I_{1}\;and\;I_{3}\;respectively$) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of $I_{3}/I_{1}$ was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.

복부대동맥 분기관에서의 벽면전단응력 분포 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향 (Wall Shear Stress Distribution in the Abdominal Aortic Bifurcation : Influence of wall Motion, Impedance Phase Angle, and non-Newtonian fluid)

  • 최주환;김찬중;이종선
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권3호
    • /
    • pp.261-271
    • /
    • 2000
  • 벽면운동(wall motion)과 임피던스 페이즈앵글(impedance phase angle; 압력파와 유랑파 기아의 위상차)을 고려하여 맥동유동하에 있는 복부대동맥 분기관모델에서 2차원 전산유체해석을 수행하였다. 해석결과 분기광 근처에서응 전단응력의 크기가 매우 급격한 변화를 보임을 관찰하였고 벽면운동은 전단응력의 진폭을 감소시키는 효과를 가져왔다. 임피던스 페이즈 앵글이 음의 값을 향해 갈수록 시간 평균된 벽면 전단응력(mean wall shear stress)의 값은 감소하였으나 진폭(amplitude of wall shear stress)은 오히려 증가하였다. 페이즈앵글의 영향은 평균 벽면전단응력이 영에 근접하는 외벽(outer wall or lateral wall)의 바같쪽으로 휘어지는 부분(curvature site)에서 상대적으로 크게 나타났는데 $-90^{\circ}$ 페이즈앵글(혈류파가 혈압파를 1/4주기 앞서는 경우)일 경우에 $0^{\circ}$의 경우에 비해 평균은 $50\%$정도 감소하였고 진폭은 $15\%$정도의 상승를 나타내었다. 그러므로 고혈압 환자와 같이 큰 음의 페이즈앵글을 갖는 경우, 벽면전단응력의 평균은 낮아지고 시간에 따라 변화량(진폭)은 증가하므로 low and oscillatory wall shear stress 이론에 의하면 동맥경화에 더 민감하게 된다. 비뉴턴유체로 모델링한 경우에는 뉴턴유체의 경우에 비해 벽면전단응력의 평균값이 증가하므로서 동맥경화에 덜 민감하게 된다.

  • PDF

Effects of Linear and Nonlinear Shear Deformation on Measurement for Stickiness of Cosmetics Using Rotational Rheometer

  • Bae, Jung-Eun;Ryoo, Joo-Yeon;Kang, Nae-Gyu
    • Korea Journal of Cosmetic Science
    • /
    • 제2권1호
    • /
    • pp.33-46
    • /
    • 2020
  • Cosmetics are representative complex fluids, and there have been many studies focusing on the correlation between the rheological properties and sensory attributes. Various instrumental measurements have been suggested to evaluate the sensory attributes, and one of the most common instruments is Texture Analyzer (TA). Although it is reported that the adhesiveness measured by TA is related to the stickiness of cosmetics, there exists reproducibility problem because measurements with TA are sensitive to application conditions. In this study, an instrumental protocol using rotational rheometer has been set up to measure the stickiness of cosmetics. This protocol consists of two steps. The first step is a preconditioning step, and various types of shear deformations are applied to the samples. The next step is the extensional flow and the axial force is measured. When the amplitude of the shear flow corresponded to the linear viscoelastic region, the axial force is the same as those without preconditioning. On the other hand, an axial force decreases as variation nonlinearity increases. It is because the effects of microstructure changes caused by nonlinear deformation affects the extensional flow. It is worth noting that a new protocol facilitates to evaluate the stickiness of cosmetics in a more systematic way.