Landslide prediction modeling has been regarded as one of the important environmental applications in GIS. While, landslide stability in a certain area as collateral process for prediction modeling can be characterized by DEM-based hydrological features such as flow-direction, flow-accumulation, flow-length, wetness index, and so forth. In this study, Slope-Area plot methodology followed by stability index mapping with these hydrological variables is firstly performed for stability analysis with actual landslide occurrences at Boeun area, Korea, and then Landslide prediction modeling based on likelihood ratio model for landslide potential mapping is carried out; in addition, KOMPSAT EOC imagery is used to detect the locations and scalped scale of Landslide occurrences. These two tasks are independently processed for preparation of unbiased criteria, and then results of those are qualitatively compared. As results of this case study, land stability analysis based on DEM-based hydrological variables directly reflects terrain characteristics; however, the results in the form of land stability map by landslide prediction model are not fully matched with those of hydrologic landslide analysis due to the heuristic scheme based on location of existed landslide occurrences within prediction approach, especially zones of not-investigated occurrences. Therefore, it is expected that the resets on the space-robustness of landslide prediction models in conjunction with DEM-based landslide stability analysis can be effectively utilized to search out unrevealed or hidden landslide occurrences.
The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.
Landslides are one of the most common natural hazards causing significant damage and casualties every year. In Korea, the increasing trend in landslide occurrence in recent decades, caused by climate change, has set off an alarm for researchers to find more reliable methods for landslide prediction. Therefore, an accurate landslide-susceptibility assessment is fundamental for preventing landslides and minimizing damages. However, analyzing the stability of a natural slope is not an easy task because it depends on numerous factors such as those related to vegetation, soil properties, soil moisture distribution, the amount and duration of rainfall, earthquakes, etc. A variety of different methods and techniques for evaluating landslide susceptibility have been proposed, but up to now no specific method or technique has been accepted as the standard method because it is very difficult to assess different methods with entirely different intrinsic and extrinsic data. Landslide prediction methods can fall into three categories: empirical, statistical, and physical approaches. This paper reviews previous research and surveys three groups of landslide prediction methods.
산사태가 일어날 지점을 예측한다든지 사태물질로 인한 피해 예상지역을 알아내는 것은 쉬운 일이 아니다. 이는 산사태를 발생시키는 요인들이 여러가지가 있고 개개의 요인들이 산사태를 발생시키는데 기여하는 중요도도 서로 다르기 때문이다. 그러나 많은 산사태자료에 대한 분석을 바탕으로 발생 메커니즘 규명과 통계적 해석기법을 통해 산사태 발생가능성의 예측과 위험지역의 분류가 가능해졌다. 석조문화재가 산사면 또는 그 직하부에 인접해 있는 경우는 산사태가 발생되면 재해에 무방비로 노출되어 있다. 이 연구에서는 여름철의 집중호우 등에 의해 석조문화재 및 그 주변지역에 산사태가 발생할 가능성을 사전에 예측함으로써 그로 인한 석조문화재의 피해가능성을 분석하고자 하였다. 이러한 목적을 위해 2002년 8월 산사태재해로 인해 피해가 발생된 바 있으며 중요 석조문화재가 위치해 있는 실상사 백장암지역을 연구대상지역으로 선정하여 산사태 예측도를 작성하였다. 그리고 산사태재해 가능성을 발생확률로 표현하여 등급별로 구분함으로써 석조문화재 및 그 주변지역이 산사태에 취약한지의 여부를 평가하였다. 또한, 이러한 조사 및 해석기법을 앞으로 석조문화재 주변의 산사태재해 예측 및 평가를 위해 실용적으로 활용할 수 있는 토대를 마련하였다.
The objective of this paper is to compare the prediction performances of different landslide hazard maps based on topographic data stemming from different sources of elevation. The geostatistical framework of kriging, which can properly integrate spatial data with different accuracy, is applied for generating more reliable elevation estimates from both sparse elevation spot heights and exhaustive ASTER-based elevation values. A case study from Boeun, Korea illustrates that the integration of elevation and slope maps derived from different data yielded different prediction performances for landslide hazard mapping. The landslide hazard map constructed by using the elevation and the associated slope maps based on geostatistical integration of spot heights and ASTER-based elevation resulted in the best prediction performance. Landslide hazard mapping using elevation and slope maps derived from the interpolation of only sparse spot heights showed the worst prediction performance.
Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
한국수자원학회:학술대회논문집
/
한국수자원학회 2015년도 학술발표회
/
pp.281-281
/
2015
Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.
본 연구는 예측비율곡선을 이용한 산사태 예측 모델의 정량적 비교분석을 목적으로 하여 수행되었다. 1998년 8월 집중호우로 산사태가 발생한 경기도 장흥지역을 대상으로 위성영상과 현장답사를 통하여 산사태 발생위치를 확인하였고. GIS 기반의 다양한 산사태 관련 공간 정보를 구축하였다. 사용된 공간통합 방법은 결합 조건부 확률과 certainty factor 이며, 산사태 발생 지역을 무작위로 2개의 그룹으로 나누어서 한 개의 그룹은 예측도 작성에 사용하였으며, 나머지 그룹은 예측 결과의 검증에 사용하였다. 예측비율곡선 작성을 통해 두 예측모델의 정량적 비교가 가능하였다. 본 연구에서 사용된 예측비율곡선작성은 추후 다른 모델의 정량적 비교 분석 및 오차 분석을 하는 데에도 사용될 수 있을 것으로 기대된다.
Recently, landslides frequently happen at a natural slope during period of intensive rainfall. With rapidly increasing population of steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is developed. The system is focused to debris flows which happen frequently during periods of intensive rainfall at steep slopes in Kangwondo. This system is based on the wireless sensor network that is composed of sensor nodes, gateway, and server system. Sensor nodes that are composed of sensing part and communication part are newly developed to detect sensitive ground movement. Sensing part is designed to measure tilt angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15. I) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of laboratory tests is performed at a small-scale earth slope supplying rainfall by artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope failure starts. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs, and can be applied to ubiquitous computing city (U-City) that is characterized by disaster free.
Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.
최근 집중호우에 의한 산사태 발생이 빈번해짐에 따라 산사태 취약지역을 분석하고 산사태 발생을 예측하기 위한 다양한 연구들이 진행되고 있다. 본 연구에서는 산사태 발생지역의 토양특성을 분석하였으며, 배수 특성별 우도비를 평가한 결과 배수가 좋은 토양에서 산사태 발생 가능성이 높게 나타났다. 또한 DEM 자료에서 추출한 경사도의 우도비를 평가한 결과 $20{\sim}40^{\circ}$ 경사구간에서 산사태 발생 가능성이 높게 나타났다. 그리고 공간분석에 의한 사면방향도의 우도비를 평가한 결과 북향에서 산사태 발생 가능성이 높게 나타났다. 아울러 토양배수, 경사도 그리고 사면방향도의 우도비를 중첩하여 산사태 취약도를 평가할 수 있었으며, 산사태 발생지역에 대하여 분석과 검증 프로세스를 수행함으로써 미래 산사태 발생 예측비율을 평가할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.