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Abstract : Landslide prediction modeling has been regarded as one of the important environmental
applications in GIS. While, landslide stability in a certain area as collateral process for prediction modeling
can be characterized by DEM-based hydrological features such as flow-direction, flow-accumulation, flow-
length, wetness index, and so forth. In this study, Slope-Area plot methodology followed by stability index
mapping with these hydrological variables is firstly performed for stability analysis with actual landslide
occurrences at Boeun area, Korea, and then landslide prediction modeling based on likelihood ratio
model for landslide potential mapping is carried out; in addition, KOMPSAT EOC imagery is used to
detect the locations and scarped scale of landslide occurrences. These two tasks are independently
processed for preparation of unbiased criteria, and then results of those are qualitatively compared. As
results of this case study, land stability analysis based on DEM-based hydrological variables directly reflects
terrain characteristics; however, the results in the form of land stability map by landslide prediction model
are not fully matched with those of hydrologic landslide analysis due to the heuristic scheme based on
location of existed landslide occurrences within prediction approach, especially zones of not-investigated
occurrences. Therefore, it is expected that the results on the space-robustness of landslide prediction
models in conjunction with DEM-based landslide stability analysis can be effectively utilized to search out
unrevealed or hidden landslide occurrences.

Key Words : Hydrological Characteristics, Landslide prediction, Landslide stability, Likelihood Ratio
Model, Slope-Area Plot.

1. Introduction

GIS to hydrological applications for landslide
prediction modeling, in other name of landslide hazard
mapping, has been regarded as one of the important
application fields (Wilson et al., 2000). While,
hydrological application of GIS to landslide analysis is
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somewhat concentrated on the environmental spatial
data integration using multiple data sets followed by
concerned database building, as well as new algorithm
development/evaluation and comparison with previous
ones. The hydrological application and concerned
algorithm of GIS have been studied in various
approaches: hydrological objected-oriented data

modeling (Hellweger and Maidment, 1999; Davis,
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2000), drainage basin and watershed analysis
(O’Loughlin, 1986; Dietrich et al., 1993; Garbrecht and
Martz, 1997; Smith et al., 1997; Tarboton, 1997; Mason
and Maidment, 2000), and landslide-related
hydrological characterization (Montgomery ef al., 1994;
Wu and Sidle, 1995; Montgomery et al., 1998; Pack et
al., 1998). Also, several customizable functions to

extract basic hydrological features such as flow

direction, flow accumulation, flow length and watershed”

delineation are provided in most commercialized GIS
with full-featured functions.

Meanwhile, digital representation in the multiple geo-
based data sets is towards spatial quantitative modeling
that combines the distribution of spatial features in each
mappable data set or layer into a target-oriented theme.
This rationale or scheme, dealing with geoscientific data
integration in mineral potential mapping (Moon, 1990;
An et al., 1991; Chung and Fabbri, 1993), can also be
applied in spatial prediction models in landslide hazard
mapping. It is known that these approaches with their
own mathematical backgrounds have provided powerful

schemes for decision-supporting information, through
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several case studies for landslide hazard mapping (Van
Westen, 1993; Chung and Fabbri, 1999).

In landslide hazard mapping, “When, Where and
What scale” of landslides are important aspect in
prediction. All predictions related to future events are
always subject to the uncertainties. For the planning of
future land use, an essential component is the
identification of areas that are affected by future
landslide. So the prediction models not only identify
vulnerable areas but also estimate the uncertainties
associated with the predictions. However, proper
interpretation and quantitative evaluation of prediction
result have not been fully considered in landslide hazard
mapping. Recently emphasis has been directed towards
the application strategies that include the validation and
stability analysis of the model (Chung et al., 2001;
Fabbri and Chung, 2001).

Meanwhile, the hydrologic characteristics, such as
wetness index and saturation index, extracted from
DEM (Digital Elevation Model) can be utilized in
actual landslide analysis and hazard mapping

mentioned above, if landslide occurrences are taken
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Fig. 1. Schemes applied for landslide stability analysis and prediction modeling.
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into account, because hydrological variables are
regarded as one of the most influenced factors in
landslide prediction model. However, there are a few
case studies or published works on landslide modeling
with landslide analysis based on actual landslide
occurrences or detectable landslide features in satellite
imagery.

In this study, the landstide analysis with hydrological
variables and the landslide prediction modeling are
performed using ArcInfo and ArcView with
hydrological application programs under Spatial
Analyst, proposed and implefnented by Tarboton (1997)
and Pack et al. (1998). Furthermore, for testing on the
space-robustness of landslide prediction models, we
exemplify whether and to what extent a prediction can
be extended, in space, to neighboring areas with similar
geomorphology or geology using the validation and
stability analysis of the model, using spatial data sets
from Boeun, Korea (Fig. 1).

2. Study Area and Data Sets

The Boeun area, Korea, which had suffered from lots
of landslide damages due to the heavy rain in summer,
1998, is selected for the case study area. The input data
(termed “causal factor”) for landslide prediction
modeling consists of several layers of map information
(Table 1). The slope and aspect are directly calculated
from the DEM, using common functions. As for the soil
data sets, the texture, topography, drainage, material,
and thickness of soil are acquired from a paper soil map.
As for the forest data sets, the forest type and diameter,
age, and density of timber are digitized from forest maps
produced by Korea Forest Research Institute. While, the
lithological map is obtained from a geological map of
KIGAM. These data sets are built on a cell-based
database in GIS environment, and the whole study area

consists of 1,270 X722 pixels, covering approximately

Table 1. Description of the data sets used in the study area.

Type Data set

Landslide location

30 locations
Digital Elevation Model
Slope
Aspect
Forest Type
Timber Diameter

Topography

Forest*
Timber Age

Forest Density

Texture
Soil+* Dr'amage
Soil Type

Thickness

Geology*** Lithology

* Forest map of Boeun, Kwanki, 1:25,000, Korea forest
service, Korea forest research institute.

** Detailed interpretative soil maps of Boeun -gun, 1:25,000,
Rural development administration, Agricultural sciences
institute, 1993.

*+* Geological map of Boeun, Chongsan, 1:50,000, Korea
institute of geoscience and mineral resources, 1977, 1986.

92km?. Each pixel on these data is referenced to a 10m
by 10m area on the ground for data integration for
landslide hazard mapping.

As for the landslide locations, the aerial photographs
taken in 1996 and 1999, and KOMPSAT EOC imagery
were firstly used to detect them, and the locations were
verified in the field, done in site investigation after
landslide events. While, those landslide occurrences
were recognized on the KOMPSAT EOC imagery in
Fig. 2(a), about 30 landslides. The target pattern, with
the entire landslide bodies, consists of two separate and
distinct sub-areas: the scarp area and the deposit area.
The geomorphologic characteristics of these two sub-
areas are distinctly different. Hence, it is necessary o
define the scarps of the future landslides as the new
target pattern rather than the whole scars of the
landslides. In this study, the topographically highest
20% of the scars of the landslides are considered as

trigger areas. Though landslide occurrences are small-



Korean Journal of Remote Sensing, Vol.18, No.1, 2002

i ’Bn‘ak lines
Hard

Soft
Elevation Ranze

~ 4§73
~439.667
344332392
296.667 - 34323
249- 206,667
201.332-249
153667 - 201.333
106- 153,667

D

273m1':§ s ;};‘%1 ”\_-“;{‘(

7
7 s
LA w2 AR

p
(

(©

(d

Fig. 2. (a) Landslide occurrences superimposed on the KOMPSAT EOC imagery, (b) Sink-removed DEM-based 3D View of the
case study area in meter unit: Boeun region, Korea: Coverage (1270 x 722) with celt unit of 10 meters, in the rectangle
region of left top: 127° 38’ 53" E, 36° 29’ 58" N and right bottom: 127° 47’ 21" E, 36° 26’ 01" N, (c)10m-interval
Topographic map of the study area coverage with actual landslide scarped zones as point feature, and (d) Stream network

model in the study area with landslide point features.

scaled, tens of occurrences in one or two days were
recorded, due to the relative terrain changes in slope
and aspect (Fig. 2(b)). Landslide patterns are also
revealed at topographic relief (Fig. 2(c)), and these
occurrences were converted into point features.
However, these occurrences are verified by field
observation; therefore, they are not all occurrences,
covering unrevealed and unverified. While Fig. 2(d)
represents stream network, composed of those areas
where concentrated flow is occurring, with actual
occurrences, by Strahler stream ordering with 200 m
and 100 m intervals. Strahler stream ordering is
computed by only increases when streams of the same

order intersect, under given interval. It is shown that

this network overlaid landslide occurrences reflects
hydrological characteristics due to shallow the
transitional land-sliding controlled by shallow

groundwater flow convergence.

3. Hydrological Characteristics
related to Landslide Stability

As for shallow land-sliding, several hydrological
variables extracted from sink-removed DEM (Fig. 2(b))
provide useful information for landslide analysis.
Among them, flow direction (Fig. 3(a)) is a variable on

how many cells flow into any given cell, and flow
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Fig. 3. (a) Flow direction mapping in unit of 8 types of azimuthal direction, (b) Downstream flow length mapping in meter unit, (c)
Contributing area mapping, and (d) Saturation index mapping for wetness.

length (Fig. 3(b)) represents what areas have more water
flowing through them than others and the length of the
longest flow path within a drainage region or basin. As
well as these hydrological variables, several indices in
associated with landslide stability also can be extracted
with respect to contributing area (Fig. 3(c)), computed as
a field representing at each point the magnitude of the
drainage area upslope of that point. In terms of specific
catchment area, it is a field representing contributing
area per unit contour width.

Wetness index terms a Quantity of contributing
catchment area in squared divided by slope of cell in
degrees, and can be interpreted in the categorical classes
(Fig. 3(d)), as a kind of indicator of erosive sensitivity of

overland flow.

4. Stable Index Mapping and
S-A Plot for Calibration

With theoretical basis of ‘Infinite Plane Slope
Stability Model’ (Montgomery and Dietrich, 1994),
Stability index is defined as P(Factor of safety > 1) with
uncertainty range; according to Pack et al. (1998), the
term of Factor of safety (FS) can be formulated with
variables: topographic slope angle, relative wetness (w),
and dimensionless cohesion (C), shown in equation (1).

C + cosO[1-wr]tan¢

Fs= sind

where [€))]

. | Ra
w=min| =g, 1], C=(Cr+ Cy)[(hpsg), and r = py, /ps.

@ slope angel, ¢:soil internal friction angle, R: Recharge,

a: specific catchment area, T: soil transmissivity,

hpsg: soil weight, C,, Cs, p,, and py: Toot and soil cohension,

water density and soil density, respectively
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While, this index as spatial distribution represents
shallow subsurface groundwater flow convergence and
topographic slope, with uncertainty parameter
incorporated through ranges of soil and hydrological
parameters, not being applicable to deep-seated
instability, and it is a kind of extensible model based on
the infinite plane slope stability model with
topographically based wetness to account for parameter
uncertainty (Pack et al., 1997). Tarboton (1997)
proposed and implemented some criteria to classify
landslide stability index which maps potential landslide
initiation zones with 6 types by SI values: O Stable or
safety (SI > 1.5), @ Moderately stable (1.5 > SI > 1.25),
3 Quasi-stable (1.25 > SI > 1.0), @ Lower threshold
slope (1.0 > SI > 0.5), ® Upper threshold slope (0.5 >
SI>0.0), and ® Defended slope or instability to need
defended (0.0 > SI) . Based on these classes, summary
statistics on landslide occurrence in this area is given at
Table 2. The relatively stable classes of (O Stable, @
Moderately stable, and ) Quasi-stable are approximately
76% of 30 landslide occurrences, counted in landslide
analysis.

In this study, all landslide occurrences are not
investigated in the field survey. Moreover, the
classification of landslide types by cause effect or
hazardous zone is not considered in this study. While,
the centered location of most scarped areas in the field
survey is categorized into landslide point feature.
Therefore, it is not enough that lower percentage of

landslide occurrences at potential instability zones of

@ Lower threshold slope, ® Upper threshold slope,
and ® Defended slope represent real situation of
landslide characteristics in this area, according that
landslide density of lower/Upper threshold slope class is
rather higher than one of other classes (Fig. 4(a)).
S(Slope)-A(Area) plot for landslide stability index,
proposed by Pack er al.(1997), is applied in this study
(Fig. 4(b)). S-A plot is interpreted as a kind of
calibration plot with several calibration region
parameters of LTR, UTR, LC, UC, LFA, and UFA
which stands for Lower and Upper bound of R/T, Lower
and Upper bound of Dimensionless Cohesion, Lower
and Upper bound of soil friction angle (¢); in this study,
these parameters were used as 2000, 3000, 0., 0.25, 30°
and 40°, respectively. These bounds define uniform
probability distributions over which these quantities are
assumed to vary at random, and this uniform

distributions which lower and upper bounds as
C~U(CL, Cp)

RIT~UR, [Ty, Ry /Ty
tan ¢ ~ U(tangy , tan@y ).

?

While, these parameters are not based on the field
measures in this study area, but experiment parameters
by Pack er al.(1998) in consideration to uncertainty
bounding. Therefore, it is expected that exact field
measures in this area would be within these bounds.
While, saturation level such as saturated, unsaturated,
and wetness 10 % is also represented by using equation
(1), in the term of w. Therefore, this SA plot can be used

Table 2. Statistics of landslide occurrences in the study area.

Moderately Quasi- Lower Upper Defended
Stable Total
Stable Stable Threshold Slope | Threshold Slope Slope
% Region 64.8 34 19.8 8.1 36 03 100
Number of
Landslide 14 1 8 5 2 0 30
% Landslide 46.7 33 26.6 16.7 6.7 0.0 100
Landslid
anesce 02 03 05 07 06 0.0 03
Density
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Fig. 4. (a) Landslide stability index mapping at Boeun area in 6 classes (b) An exampe of S-A plot at Boeun area, Korea, in consideration
of actual landslide occurrences(solid circle on plot): LTR(2000m), UTR(3000m), LC(0.0), UC(0.25), LFA(30°), and UFA(40°).

to elucidate hydrological characteristics related to actual

landslide occurrences, in the slope-area space.

5. Landslide Prediction Model

Among many prediction models for landslides, in this
study, we have implemented a landslide prediction
model based on the likelihood ratio model proposed by
Chung and Fabbri (1998). The likelihood ratio model
employed in this study is described briefly here.

To identify the hazard areas for potential or

unrevealed landslides, we want to separate two sub-

areas, the hazardous sub-areas affected by landslides and
the non-hazardous sub-areas not affected by landslides.
Suppose that the study area is divided into two non-
overlapping sub-areas, above two sub-areas. If
fundamental variables such as slope, aspect, and so on
are provided, then the data from the hazardous sub-areas
should have unique characteristics that are different
from the data from the non-hazardous sub-areas. This
suggests that the probability frequency distribution
functions of the hazardous and the non-hazardous sub-
areas should be distinctly different. The likelihood ratio
function, which means the ratio of the two frequency

distribution functions, can highlight this difference.

Non-Hazardous area

0% — 50%

55% — 60%
60% — 65%
65% - 70%
70% ~15%
75% - 80%
80% - 85%
85% —90%
80% - 95%
95% - 100%

Hazardous area

Fig. 5. Prediction map of landslide hazard in Boeun area using the likelihood ratio function.
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Consider the study area A, and a pixel p in A and a

proposition:
T : “p will be affected by the future landslide of type D” (3}

For each k-th layer Ly, the m layers of map data at

every p in A are represented, in a quantized form by:

{edp) k=1, - - )

where, ci(p) is the quantized value for the k-th layer Ly at p.

-,m), A}

Then, in probability framework, measurement of the
“sureness” that the proposition Ty, is true, given the m
causal factors (ck(p), k=1, - - -, m)atpis assumed

to be the joint conditional probability function.

Favoroubility function{T,|ck(p)} = Prob{Tplck(p)}  (5)

Above function value indicates that how each of the
m pieces of evidence (ci(p), k=1, - - -, m)) supports
the “sureness” that the proposition is true at p. Suppose
M}, denotes the proposition that p comes from the area
affected by landslides, and M p from p comes from the
area not affected by landslides. Also, let Prob(ci(p)| Mp)
and Prob(c(p)|M ;) be the empirical frequency
distribution function of area affected by landslides and
that of area not affected by landslides, respectively.

Then likelihood ration function A, can be calculated

as follows:

Aplex(p)) = Prob{cy(p)| Mp} / Prob{e(p)| M p}

_ 1-Prob{M,} Prob{Mjc;}
T TProb(M,) = 1-Prob(Myled

©)

For each data layer, two empirical distribution
functions for the hazardous sub-areas and the non-
hazardous sub-areas are computed by using the
Bayesian combination rule, and then the likelihood ratio
functions for all data layers are combined. The
prediction maps can be obtained from these joint
likelihood ratio functions.

To visualize a prediction map, we used rank order

statistics. We first computed the score for each pixel and

then sort all scores by increasing order to determine the
ranks of the scores. The pixel that has the smallest score
(the smallest prediction value) has rank one, and the
pixel that has the maximum score has the maximum
rank, 916940, the total number of pixels. Then the ranks
are normalized so that the maximum value is 1 or 100%
and the normalized values are termed the favourability
indices or simply indices. The pixel with the index
100% had the largest score of the prediction function. If
the pixels have index, 99.5%, it means that the ranks of
their function scores are within the top 0.5% (99.5% -
100%} in the study area. These indices over the study
area constitute a prediction map. In Fig. 5, we delineate
the areas that show high landslide hazard, and overall,
the resultant layer fitted the real situation, showing in the
past landslides.

The next question in prediction modeling is how
successful this prediction map would be with respect to
the future landslides. It leads to the next essential step of
validation.

6. Analytical Procedure for
Space-Robustness

The critical strategy in prediction models is the task
of validating the prediction results, so that the prediction
results can provide meaningful interpretation with
respect to the future landslides. To carry out the
validation, we must restrict the use of all the data of the
past landslides in the study area. By partitioning the
data, one subset is used for obtaining a prediction map;
the other subset is compared with the prediction results
for validation. To establish whether and to what extent a
prediction can be extended, in space, to neighboring
areas with similar geology, we divided the entire study
area into two separated sub-areas. We selected one of
two sub-areas to construct a prediction model and the

other to validate the prediction. When we use this space-
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partition technique, then we are able to extend the
current prediction model in the study area to the
surrounding areas or similar geology. It represents a
form of data mining where the study area and the
respective database are subdivided into two parts so that
the spatial data from one part is used to compute the
prediction over the entire area, and the landslides
distribution from another part is used to validate it. Then
the predicted parts that can be validated can be
assembled into a mosaic of predictions.

The study area has been subdivided into a northern

sub-area and a southern sub-area. This was because the

Causal factors

oy

] 3

Partitioning the past
landslides to two groups

North Y]
: 21 landslides /’

South
: 9 landslides

Likelihood ratio

geological trend runs in the north-south direction so that
greater similarity exists between north-south than east-
west sub-areas, and the corresponding database
subdivisions.

This space-partition technique has been used as
follows (Fig. 6): (i) the 21 scarps distributed in the north
sub-area together with the corresponding spatial
database were used the compute the south sub-area
prediction model, and (ii) similarly the 9 scarps in the
south sub-area with the corresponding spatial database
were used to compute the north sub-area prediction

model. Then we assembled them into a mosaic of the

Mosaic of
two prediction results

function

Compare the
prediction results with
the past landslides

k]

Prediction rate curve

P
11
-

RN
b b AL et em e W

Fig. 6. Procedure for testing on the space-robustness of landslide prediction model.
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Fig. 7. Prediction rate curve for a mosaic of two predictions.
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two representations. To validate a mosaic prediction
map, we computed the prediction rate curve, which can
explain the proportion of pixels correctly classified for
the whole scarps in a mosaic map (Fig. 7). This
prediction rate curve relates to the number of the future
landslides and to the probability of the occurrences of
the future landslides (Chi et al., 2001).

To interpret the curve for a prediction image in Fig. 5,
consider a point (10, 52.5) on the curve in Fig. 7(b). For
the future landslides, if we take the most hazardous 10%
area of the corresponding prediction image in Fig. 5,
then we may estimate that 52.5% of all future landslides
will be located in the delineated area. Therefore, if we
wish to delineate areas, which should identify at least
52.5% of the future landslides, then we can declare 10%
of the study area a hazardous area.

For any prediction models to generate reasonably
“good or significant” results, the prediction result should
be robust and stable (Chung er. al., 2001). Through
above space-partition technique, the corresponding
prediction rate curve in Fig. 7 can provide a measure of

space-robustness.

7. Conclusions

In this study, a case study for landslide stability
analysis under GIS environment and landslide
prediction modeling was carried out using data sets of
Boeun area, Korea. After extraction of hydrological
factors and topographically based indices of
hydrological landslide characteristics, stability index
mapping approach and the followed S-A plot were also
performed with landslide point features. As a result,
major characteristics are revealed, but high possibility of
hidden landslide occurrences or potential initiation zones
is also expected. As for S-A plot, if actual measurements
are applied, this plot is regarded as an important result to

characterize landslide areas, because it contains

~10-

hydrological information such as stability index with
actual occurrences and wetness index, according to
contributing caichment area and soil friction angle.

For landslide prediction modeling, we exemplified
how data mining can be used to assess the degree of
support provided by the spatial data that were used to
represent the physical conditions in the neighborhoods
of the known landslides and to extrapolate them to those
of other unknown future landslides. Owing to the spatial
partitioning of the landslide distribution, the validation
strategy provides some empirical measures of support in
the prediction of “where the landslides are likely to
occur”. We must stress that significance of the
prediction is only within the validation results or degree
of satisfaction for the spatial matching of hazard ranges
and the relative distribution of validation landslides. This
validation result and its interpretation are useful as
pieces of “heuristic supporting information”, not only
for evaluating the space-robustness of the prediction
models, but also for analyzing the landslides that had
occurred at the neighboring areas.

In this paper, these two tasks were independently
processed for preparation of unbiased criteria, and then
results of those were qualitatively compared. As results,
land stability analysis based on DEM-based
hydrological variables directly reflects terrain
characteristics; however, results in the form of land
stability map by landslide prediction model is not fully
matched due to heuristic scheme within prediction
approach. Therefore, it is expected that the results on the
space-robustness of landslide prediction models in
conjunction with DEM-based landslide stability analysis
can be effectively utilized to search out unrevealed or
hidden landslide occurrences. Also, this kind of
approach will be further utilized to delineate
hydrological characteristics of large-scale watersheds,
even to small-scale ones, related to landslide occurrence.

For the future works related to prediction modeling,

some aspects will be considered. The important tasks in
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spatial prediction model are that one is the choice of
prediction model and the other is the selection of
relevant data layers which contain useful information in
causal factors. We are currently analyzing the selection
of causal factors, and evaluating other prediction models
such as fuzzy logic model and evidential reasoning

approach.
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