• Title/Summary/Keyword: land-use classification

Search Result 363, Processing Time 0.029 seconds

Characteristics of Vegetation Biotope in Cultural Heritage Site of Odaesan National Park (오대산국립공원 공원문화유산지구 식생비오톱 특성 분석)

  • Kim, Ji-Suk;Yi, Young-Kyoung;Yi, Pyong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.70-82
    • /
    • 2016
  • We investigated the vegetation structure in Cultural Heritage Site of Odaesan National Park using 52 quadrats for each type of land use to figure out some characteristics of plant biotope. As we classified vegetation communities, they are six groups of communities. distinguished species in two of them are Taraxacum officinal, Erigeron annuus and Poa pratensis which are common in urban areas. Distinguished species in one of them are Potentilla fragarioides var. major which is common in outskirt of forest. And Distinguished species in another 3 communities are Sasa borealis and Quercus mongolica which are common in forest. Using TWINSPAN and DCA, we are able to classify the six communities into 3 types biotope (temple-biotope, slope-biotope, forest-biotope) in Cultural Heritage Site. The dominant species of urban-biotope are Poa pratensis, Artemisia prinseps and that of slope-biotope is Tripterygium regelii. Also the dominant species of forest-biotope are Quercus mongolica, Abies holophylla and Ulmus davidiana var. japonica. We could see more species in slope-biotope than another biotope types. Moreover, in urban-biotope types, we could find many of naturalized plant species.

Regional Variation and Discharge Characteristics of Stream Water Quality and Heavy Metals Around the Shihwa Lake Basin (시화호 유역 하천수 일반수질 및 중금속의 변화 및 유출 특성 연구)

  • Jeong, Hyeryeong;Kim, Kyung-Tae;Kim, Eun-Soo;Lee, Seung-Yong;Ra, Kongtae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.76-83
    • /
    • 2017
  • In order to investigate the characteristics of water quality and heavy metals in Shihwa Lake, concentration comparisons according to land use types and mass discharge through streams were carried out. Based on classification for streams according to land use types, the concentration of DO, SS, POC, $NO_3$ and Chl-a showed higher concentrations in agricultural areas than in industrial and urban areas. However, COD, DIN, DIP, TN, TP, DOC, TOC and heavy metal concentrations showed relatively high values in industrial areas. The concentrations of water qualities and heavy metals were relatively high in March to May and the concentration decreased in summer seasons (July-August). The averages of stream discharges of water qualities were 1,172 kg/d for SS, 151 kg/d for TN, 11.1 kg/d for TP and 389 kg/d for TOC, respectively. The agricultural area, Jangjunbo(S8), accounted for 47.5%(TP)~75.1%(SS) in the total stream discharges. Cu, Zn and Cd in stream waters were found to be more than 92% of the total discharges in industrial area, showing descending order of Zn>Cu>Ni>Pb>Co>Cd.

A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas (변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구)

  • Yeon, Jong-Min;Kim, Hyun-Ok;Yoon, Bo-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.66-80
    • /
    • 2012
  • It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Use Impact Assessment and Management System on the Forest Recreation Site from an Ecological Perspective - Recreation Opportunity Spectrum as a Tool of Forest Recreation Site Planning and Management - (생태학적(生態學的) 접근(接近)을 통한 삼림휴양지(森林休養地)의 이용영향평가(利用影響評價) 및 관리체계(管理體系) -삼림휴양지(森林休養地) 계획(計劃) 및 관리도구(管理道具)로서의 레크리에이션 기회분포역분석(機會分布域分析) 기법(技法))

  • Park, Bong Woo;Haas, Glenn E.
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.372-382
    • /
    • 1992
  • Recreation planning is essential activity to meet changing demands and to protect the resources. The recreation opportunity specturm(ROS) system is a principal part of a recreational management planning. In this study, the basic concepts and tenets of the ROS system described and reviewed the feasibility of applying to forest recreation planning to the Korean national forest. In Korea, the forest land as a major recreation place has used without the rational planning process. The control for the laissez-faire use on the forest area, the classification of recreational opportunity settings is the most important process and then it make a useful tool for providing proper recreational opportunity and site development guidance. Opportunity settings classification can help maintain diversity and enhance protection of forest resources. It can also improve the quality of recreational experiences and the management action guidances. GIS technology using the ARC/INFO could be useful in current attempts to identify analysis areas for predictive modeling of forest recreation site planning.

  • PDF

THE ROLE OF SATELLITE REMOTE SENSING TO DETECT AND ASSESS THE DAMAGE OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.827-830
    • /
    • 2006
  • The tsunami from the megathrust earthquake magnitude 9.3 on 26 December 2004 is the largest tsunami the world has known in over forty years. This tsunami destructively attacked 13 countries around Indian Ocean with at least 230,000 fatalities, displaced people 2,089,883 and 1.5 million people who lost their livelihoods. The ratio of women and children killed to men is 3 to 1. The total damage costs US$ 10.73 billion and rebuilding costs US$ 10.375 billion. The tsunami's death toll could have been drastically reduced, if the warning was disseminated quickly and effectively to the coastal dwellers along the Indian Ocean rim. With a warning system in Indian Ocean similar to that operating in the Pacific Ocean since 1965, it would have been possible to warn, evacuate and save countless lives. The best tribute we can pay to all who perished or suffered in this disaster is to heed its powerful lessons. UNESCO/IOC have put their tremendous effort on better disaster preparedness, functional early warning systems and realistic arrangements to cope with tsunami disaster. They organized ICG/IOTWS (Indian Ocean Tsunami Warning System) and the third of this meeting is held in Bali, Indonesia during $31^{st}$ July to $4^{th}$ August 2006. A US$ 53 million interim warning system using tidal gauges and undersea sensors is nearing completion in the Indian Ocean with the assistance from IOC. The tsunami warning depends strictly on an early detection of a tsunami (wave) perturbation in the ocean itself. It does not and cannot depend on seismological information alone. In the case of 26 December 2004 tsunami when the NOAA/PMEL DART (Deep-ocean Assessment and Reporting of Tsunami) system has not been deployed, the initialized input of sea surface perturbation for the MOST (Method Of Splitting Tsunami) model was from the tsunamigenic-earthquake source model. It is the first time that the satellite altimeters can detect the signal of tsunami wave in the Bay of Bengal and was used to validate the output from the MOST model in the deep ocean. In the case of Thailand, the inundation part of the MOST model was run from Sumatra 2004 for inundation mapping purposes. The medium and high resolution satellite data were used to assess the degree of the damage from Indian Ocean tsunami of 2004 with NDVI classification at 6 provinces on the Andaman seacoast of Thailand. With the tide-gauge station data, run-up surveys, bathymetry and coastal topography data and land-use classification from satellite imageries, we can use these information for coastal zone management on evacuation plan and construction code.

  • PDF

A study on the selection of evapotranspiration observatory representative location in Chuncheon Dam basin (증발산량 관측 대표위치 선정에 관한 연구: 춘천댐 유역을 중심으로)

  • Park, Jaegon;Kim, Kiyoung;Lee, Yongjun;Hwag-Bo, Jong Gu
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.979-989
    • /
    • 2022
  • In hydrological surveys, observation through representative location is essential due to temporal and spatial limitations and constraints. Regarding the use of hydrological data and the accuracy of the data, there are still insufficient observatories to be used in a specific watershed. In addition, since there is virtually no standard for the location of the current evapotranspiration, this study proposes a method for determining the location of the evapotranspiration. To determining the location of evapotranspiration, a grid is selected in consideration of the operating range of the Flux Tower using the eddy covariance measurement method, which is mainly used to measure evapotranspiration. The grid of representative location was calculated using the factors affecting evapotranspiration and satellite data of evapotranspiration. The grid of representative location was classified as good, fair, and poor. As a result, the number of good grids calculated was 54. It is judged that the classification of the grid has been achieved regarding topography and land use as a characteristic that appeared in the classification of the grid. In particular, in the case of elevation or city area, there was a large deviation, and the calculated good grid was judged to be a group between the two distributions.

A Study on the Evaluation Criteria for Reconstruction Charge Allocation (재건축부담금 배분을 위한 지자체 평가기준 연구)

  • Kim, Joo-Jin;Song, Young-Hyun
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.35-46
    • /
    • 2011
  • This paper aims at examining the indices and their weights for the evaluation of local government to allocate reconstruction charge and reviewing the availability of them simulating local governments' evaluation. There has been no specific evaluation criteria existed, while central government has to allocate the reconstruction charge to local governments by the provision 3 of Restitution of Housing Reconstruction Gains Act. The results as follows : According to a survey on evaluation indices weight and AHP analysis, the weight of 'the housing welfare improve effort' is the highest with 25.1% among 5 upper-classification indices. Following this, each weight of 'housing welfare conditions(22.7%)', 'housing SOC establishment(22.5%)', 'the achievement and planning on reconstruction charge use(15.8%)', and 'housing sector achievement such as Bogeumjari(13.9%)' are ranked. Meanwhile, Among 16 lower-classification indices, 'the rate of minimum housing standard households(11.5%)', 'public rental housing supply(8.9%)', 'reconstruction charge use achievement(8.3%)', 'reconstruction charge use planning submit(7.5%)', and 'rate of water and sewage(6.3%)' hold high rank. The analysis results show the weight of 'housing sector achievement such as Bogeumjari' on the existing provisions should be decreased(30%${\rightarrow}$13.9%) as others' weight has to be slightly increased. According to the result of the simulation, Jeonbuk, Gyeongbuk, Jeonnam, Jeju, Gyeonggi received higher scores in the comprehensive evaluation, while Daejeon, Seoul, Incheon, Daegu and Gwangju, where the housing conditions are relatively good, received lower scores. These results of the analysis correspond with the direction of reconstruction charges allocation and indicate that the evaluation criteria used in this simulation is acceptable.

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.

L-THIA Modification and SCE-UA Application for Spatial Analysis of Nonpoit Source Pollution at Gumho River Basin (환경부 토지피복 중분류 적용을 위한 L-THIA 모델 수정과 SCE-UA연계적용에 의한 금호강유역 비점오염 분포파악)

  • Kim, Jung-Jin;Kim, Tae Dong;Choi, Dong Hyuk;Lim, Kyoung Jae;Engel, Bernard;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.311-321
    • /
    • 2009
  • Long-Term Hydrologic Impact Assessment (L-THIA) was modified to improve runoff and pollutant load prediction for Korean watersheds with changes in land use classification and event mean concentration produced from observed data in Korea. The L-THIA model was linked with SCE-UA, which is one of the global optimization techniques, to automatically calibrate direct runoff. Modified L-THIA model was applied to Gumho River Basins to analyze spatial distribution of nonpoint source pollution. The results of model calibration during 1991~2000 and validation during 1981~1990 for direct runoff represented high model efficiency of 0.76 for calibration and 0.86 for validation. As a results of spatial analysis of nonpoint source pollution, the BOD was mainly loaded from urban area but SS, TN, and TP from agricultural area which is mainly located along the stream. Modified L-THIA model improve its accuracy with minimum imput data and application efforts. From this study, we can find out the L-THIA model is very useful tool to predict direct runoff and pollutant loads from the watershed and spatial analysis of nonpoint source pollution.