DOI QR코드

DOI QR Code

A study on the selection of evapotranspiration observatory representative location in Chuncheon Dam basin

증발산량 관측 대표위치 선정에 관한 연구: 춘천댐 유역을 중심으로

  • Park, Jaegon (Han River Survey Department, Korea Institute of Hydrological Survey) ;
  • Kim, Kiyoung (Survey Planning Department, Korea Institute of Hydrological Survey) ;
  • Lee, Yongjun (Korea Survey Planning Department, Institute of Hydrological Survey) ;
  • Hwag-Bo, Jong Gu (Han River Survey Department, Korea Institute of Hydrological Survey)
  • 박재곤 (한국수자원조사기술원 한강조사실) ;
  • 김기영 (한국수자원조사기술원 조사기획실) ;
  • 이용준 (한국수자원조사기술원 조사기획실) ;
  • 황보종구 (한국수자원조사기술원 한강조사실)
  • Received : 2022.09.05
  • Accepted : 2022.10.24
  • Published : 2022.11.30

Abstract

In hydrological surveys, observation through representative location is essential due to temporal and spatial limitations and constraints. Regarding the use of hydrological data and the accuracy of the data, there are still insufficient observatories to be used in a specific watershed. In addition, since there is virtually no standard for the location of the current evapotranspiration, this study proposes a method for determining the location of the evapotranspiration. To determining the location of evapotranspiration, a grid is selected in consideration of the operating range of the Flux Tower using the eddy covariance measurement method, which is mainly used to measure evapotranspiration. The grid of representative location was calculated using the factors affecting evapotranspiration and satellite data of evapotranspiration. The grid of representative location was classified as good, fair, and poor. As a result, the number of good grids calculated was 54. It is judged that the classification of the grid has been achieved regarding topography and land use as a characteristic that appeared in the classification of the grid. In particular, in the case of elevation or city area, there was a large deviation, and the calculated good grid was judged to be a group between the two distributions.

수문조사에서는 시·공간적 한계 및 제약으로 인하여 대표지점을 통한 관측이 필수적이다. 수문자료의 활용 및 자료의 정확성에 있어 특정 유역을 대표하는 관측소가 부족한 실정이다. 또한 현재 증발산량 측정 위치에 대한 기준이 사실상 전무하기 때문에 본 연구에서는 증발산량 측정 위치 결정에 관한 방법을 제시하고자 한다. 증발산량 측정 위치 결정은 증발산량 측정에 주로 사용되고 있는 에디공분산(eddy covariance) 측정 방법에서 관측 타워(Flux Tower) 운영범위를 고려한 격자를 선정하였으며 증발산량에 영향을 미치는 인자, 증발산량 위성자료를 통해 대표위치 격자를 산정하였다. 산정된 대표위치 격자는 양호, 보통, 미흡으로 분류하였다. 결과로 산정된 양호격자의 수는 54개이다. 격자의 분류에서 나타난 특징으로 지형, 토지이용에서 격자의 분류가 이루진 것으로 판단된다. 특히 표고나 시가지의 경우 편차가 크게 나타났으며 산정된 양호 격자는 두 분포 사이의 집단으로 판단된다.

Keywords

Acknowledgement

본 연구는 2021년도 (주)한국수력원자력 한강수력본부의 지원을 받아 수행된 기초연구사업입니다. 이에 감사드립니다.

References

  1. Baik, J., Park, J., and Choi, M. (2016). "Assessment of actual evapotranspiration using modified satellite-based priestley-taylor algorithm using MODIS products." Journal of Korea Water Resources Association, Vol. 49, No. 11, pp. 903-912. https://doi.org/10.3741/JKWRA.2016.49.11.903
  2. Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., and Holtslag, A.A.M. (1998). "A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation." Journal of Hydrology, Vol. 212-213, pp. 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
  3. Dunn, S.M., and Mackay, R. (1995). "Spatial variation in evapotranspiration and the influence of land use on catchment hydrology." Journal of Hydrology, Vol. 171, No. 1-2, pp. 49-73. https://doi.org/10.1016/0022-1694(95)02733-6
  4. George, B. (2013). Eddy covariance method for scientific, industrial, agricultural and regulatory applications. LI-COR Biosciences, U.S., pp. 115-136.
  5. Gleick, P.H. (1993). Water in crisis. Oxford University Press, NY, U.S.
  6. Huang, J., Li, Z., Wang, W., Song, G., and Wang, J. (2021). "Characteristics of evaporation and its effect factors in the Golmud River catchment." Hydrogeology & Engineering Geology, Vol. 18 No. 3, pp. 31-37.
  7. Jackson, R.J. (1967). "The effect of slope, aspect and albedo on potential evapotranspiration from hillslopes and catchments." Journal of Hydrology (New Zealand), Vol. 6, No. 2, pp. 60-69.
  8. Jee, J.-B., and Choi, Y.-J. (2014). "Conjugation of landsat data for analysis of the land surface properties in capital area." Journal of Korean Earth Science Society, Vol. 35, No. 1, pp. 54-68. https://doi.org/10.5467/JKESS.2014.35.1.54
  9. Kerry, C.N., Martha, A., Yang, Y., Yun, Y., Simon, J,H., Joshua, F., Gregory, H.H., Glynn, H., Chris, H., Dennis, B., Nathaniel, A.B., Ankur, D., Timothy, G., and Kimberly, N. (2021). "Evaluation of a CONUS-Wide ECOSTRESS DisALEXI Evapotranspiration Product." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, No. 17, pp. 10117-10133. https://doi.org/10.1109/JSTARS.2021.3111867
  10. Kim, G.-Y., Lee, Y.-J., and Lee, Y.-G., (2021). "Soil moisture content, evapotranspiration research technology and development direction." Water for future, Korea Water Resources Association, Vol. 54, No. 6, pp. 33-44.
  11. Kim, K., Lee, Y., Jung, S., and Lee, Y. (2019) "A study on the calculation of evapotranspiration crop coefficient in the Cheongmicheon paddy field." Korean Journal of Remote Sensing, Vol. 35, No. 6-1, pp. 883-893. https://doi.org/10.7780/KJRS.2019.35.6.1.1
  12. Kim, Y.P. (2008). "A study on distribution characteristic of NDVI according to the topographic position." Journal of the Korean Institute of Forest Recreation, Vol. 12, No. 4, pp. 44-54.
  13. Kljun, N., Calanca, P., Rotach, M.W., and Schmid, H.P. (2015). "A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP)." Geoscientific Model Development, Vol. 8, No. 11, pp. 3695-3713. https://doi.org/10.5194/gmd-8-3695-2015
  14. Laurent, K. (1998). "A model for hydrological equilibrium of leaf area index on a global scale." Journal of Hydrology, Vol. 212-213, pp. 268-286. https://doi.org/10.1016/S0022-1694(98)00211-X
  15. Lee, J.H., and Ryu, Y.G. (2002). "Optimal network design for the estimation of areal rainfall." Journal of Korea Water Resources Association, Vol. 35, No. 2, pp. 187-194. https://doi.org/10.3741/JKWRA.2002.35.2.187
  16. Lee, Y.-K., Lee, J.H., Kwon, K.S., and Jung, S.W. (2011). "Study on the network design of soil moisture and evapotranspiration." Proceedings of the Korea Water Resources Association Conference, pp. 324-324.
  17. Mustapha, E.M., and Jing, M.C. (2006). "Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture." Remote Sensing of Environment, Vol. 102, No. 1-2, pp. 33-51. https://doi.org/10.1016/j.rse.2006.01.017
  18. Park, J., Baik, J., and Choi, M. (2017). "Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia." Catena: An Interdisciplinary Journal of Soil Science, Hydrology, Geomorphology Focusing on Geoecology and Landscape Evolution, Vol. 156, pp. 305-314.
  19. Richard, G.A., Luis, S.P., Dirk, R., and Martin, S. (1998). Crop evapotranspiration - guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO (Food and Agriculture Organization of the United Nations), Rome, Italy.
  20. Shin, H.-J., Ha, R., Park, M.J., and Kim, S.J. (2010). "Estimation of spatial evapotranspiration using the relationship between MODIS NDVI and Morton ET - for Chungjudam watershed -." Journal of The Korean Society of Agricultural Engineers, Vol. 52, No. 1, pp. 19-24. https://doi.org/10.5389/KSAE.2010.52.1.019
  21. Shin, S.C., and An, T.Y. (2004). "Estimation of areal evapotranspiration using NDVI and temperature data." Journal of the Korean Association of Geographic Information Studues, Vol. 7, No. 3, pp. 79-89.
  22. Shukla, J., and Mintz, Y. (1982). "Influence of land-surface evapotranspiration on the earth's climate." Science, Vol. 215, No. 4539, pp. 1498-1501. https://doi.org/10.1126/science.215.4539.1498
  23. Wiegand, C.L., Richardson, A.J., and Kanemasu, E.T. (1979). "Leaf area index estimates for wheat from LANDSAT and their implications for evapotranspiration and crop modeling." Agronomy Journal, Vol. 71, No, 2, pp. 336-342. https://doi.org/10.2134/agronj1979.00021962007100020027x
  24. World Meteorological Organization (WMO) (1966). Measurement and estimation of evaporation and evapotranspiration: report of a working group on Evaporation measurement of the Commission for Instruments and methods of observation, Switzerland.
  25. Yan, H., Wang, S.Q., Billesbach, D., Oechel, W, Zhang, J.H., Meyers, T., Martin, T.A., Matamala, R., Baldocchi, D., Bohrer, G., Dragoni, D., and Scott, R. (2012). "Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model." Remote Sensing of Environment, Vol. 124, pp. 581-595. https://doi.org/10.1016/j.rse.2012.06.004
  26. Zhang, Z., Gong, Y., and Wang, Z. (2018). "Accessible remote sensing data based reference evapotranspiration estimation modelling." Agricultural Water Management, Vol. 210, pp. 59-69. https://doi.org/10.1016/j.agwat.2018.07.039