• 제목/요약/키워드: laminar

검색결과 1,412건 처리시간 0.022초

비정상 화염편 모델을 이용한 대기압 층류 비예혼합 CH4/Air 화염장의 매연입자 생성 특성 및 화염구조 해석 (Unsteady Flamelet Modeling for Flame Structure and Soot Formation of Lanimar Non-premixed CH4/Air Flame)

  • 김태훈;전상태;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.137-138
    • /
    • 2012
  • The two-equation soot model based on the transient laminar flamelet model is implemented for soot formation of laminar non-premixed $CH_4/Air$ flame with detailed chemical reaction mechanism and complex thermodynamic properties. The soot model represents nucleation, growth and oxidation with gas-phase chemistry. This represented unsteady flamelet soot model has been tested and compared using well verified reference calculation result obtained solving the Full Transport Equations method.

  • PDF

Fin이 부착된 원관내를 통과하는 층류 유동해석 (Analysis of Laminar Flow Through Internally Finned Tube)

  • 정호열;정재택
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.254-260
    • /
    • 2002
  • There have been many studies for the flow through internally finned tube, since the heat exchangers with fin device derive much attention in heat transfer enhance cent. In this study, analysis of laminar flow through the circular tube with longitudinal fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar and conformal mapping is used to obtain analytic solution. From the analytic solution, equi-velocity lines are shown, and the flow rate through the finned tube is calculated for various fin heights and numbers of fins. Darcy friction factor for this finned tube and shear stress distributions on the wall and fin are also considered.

층류유동 저습도 조건에서의 평행평판형 냉각판 서리성장 실험 (Experiment of frost growth on the parallel plates in the condition of laminar and low humidity)

  • 한흥도;노승탁
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.440-447
    • /
    • 1999
  • The frosting characteristics on the vertical parallel plates with three cooling plates were experimentally investigated. The experimental parameters were the cooling plate temperature, the air humidity, the air temperature, the air Reynolds number, and the location. The frosting conditions were limited to air temperatures from 10 to $15^{\circ}C$ , air Reynolds numbers from 1600 to 2270, air humidity ratios from 0.00275 to 0.0037kgw/kga and cooling plate temperatures from -10 to $-20^{\circ}C$. Frost growth and density toward the front of the plate were more thick and dense than toward the rear. Frost growth increased with decreasing plate temperature and increasing humidity. In the conditions of the laminar flow, dew point below $0^{\circ}C$and non-cyclic frosting period, frost thickness increased with increasing air temperature. The reason of increasing frost thickness with increasing air temperature was sublimation-ablimation process. The average growth thickness along the locations showed little dependence on the Reynolds numbers.

  • PDF

수소-공기 화염의 안전성 향상을 위한 프로판 첨가 효과 (Effects of propane substitution for safety improvement of hydrogen-air flame)

  • 권오채
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.12-22
    • /
    • 2004
  • In order to evaluate the potential of partial hydrocarbon substitution to improve the safety of hydrogen use in general and the performance of internal combustion engines in particular, the outward propagation and development of surface cellular instability of spark-ignited spherical premixed flames of mixtures of hydrogen, hydrocarbon, and air were experimentally studied at NTP (normal temperature and pressure) condition in a constant-pressure combustion chamber. With propane being the substituent, the laminar burning velocities, the Markstein lengths, and the propensity of cell formation were experimentally determined, while the laminar burning velocities and the associated flame thicknesses were computed using a recent kinetic mechanism. Results show substantial reduction of laminar burning velocities with propane substitution, and support the potential of propane as a suppressant of both diffusional-thermal and hydrodynamic cellular instabilities in hydrogen-air flames.

Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed Laminar Convection with Constant Wall Heat Flux

  • Haghgooyan, M.S.;Aghanajafi, C.
    • Korean Chemical Engineering Research
    • /
    • 제52권3호
    • /
    • pp.294-301
    • /
    • 2014
  • This study focuses on analysis and comparison of entropy generation in various cross-sectional ducts along with fully developed laminar flow and constant uniform wall heat flux. The obtained results were compared in ducts with circular, semicircular, and rectangular with semicircular ends, equilateral triangular, and square and symmetrical hexagonal cross-sectional areas. These results were separately studied for aspect ratio of different rectangular shapes. Characteristics of fluid were considered at average temperature between outlet and inlet ducts. Results showed that factors such as Reynolds number, cross section, hydraulic diameter, heat flux and aspect ratio were effective on entropy generation, and these effects are more evident than heat flux and occur more in high heat fluxes. Considering the performed comparisons, it seems that semicircular and circular cross section generates less entropy than other cross sections.

격자 볼츠만 방법을 이용한 미소채널 내에서의 층류 유동에 대한 표면 거칠기의 영향 (Effect of surface roughness on laminar flow in a micro-channel by using lattice Boltzmann method)

  • 신명섭;윤준용;변성준;김각중
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.179-183
    • /
    • 2006
  • Surface roughness is present in most of the microfluidic devices due to the microfabrication techniques. This paper presents lattice Boltzmann method (LBM) results for laminar flow in a microchannel with surface roughness. The surface roughness is modeled by an array of rectangular modules placed on top and bottom side of a parallel-plate channel. In this study, LBGK D2Q9 code in lattice Boltzmann Method is used to simulate flow field for low Reynolds number in a micro-channel. The effects of relative surface roughness, roughness distribution, roughness size and the results are presented in the form of the product of friction factor and Reynolds number. Finally, a significant increase in Poiseuille number is detected as the surface roughness is considered, while the effect of roughness on the microflow field depends on the surface roughness.

  • PDF

3차원 일반 좌표계에서의 PISO, SIMPLE, SIMPLE-C 알고리즘의 비교 (A Comparative Study of PISO, SIMPLE, SIMPLE-C Algorithms in 3-dimensional Generalized Coordinate Systems)

  • 박준영;백제현
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.26-34
    • /
    • 1996
  • The performance of the SIMPLE, SIMPLE-C and PISO algorithms for the treatment of the pressure-velocity coupling in fluid flow problems were examined by comparing the computational effort required to obtain the same level of the convergence. Example problems are circular duct and 90-degree bent square-duct. For circular duct case, laminar and turbulent flow were computed. For 90-degree bent square-duct case, laminar flow was simulated by the time-marching method as well as the iterative method. The convergence speed of the other two algorithms are not always superior to SIMPLE algorithm. SIMPLE algorithm is faster than SIMPLE-C algorithm in the simple laminar flow calculations. The application of the PISO algorithm in three dimensional general coordinates is not so effective as in two-dimensional ones. Since computational time of PISO algorithm is increased at each time step(or iterative step) in three dimension, the total convergence speed is not decreased. But PISO algorithm is stable for large time step by using time marching method,.

  • PDF

Applications of Stokes Eigenfunctions to the Numerical Solutions of the Navier-Stokes Equations in Channels and Pipes

  • Rummler B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.63-65
    • /
    • 2003
  • General classes of boundary-pressure-driven flows of incompressible Newtonian fluids in three­dimensional (3D) channels and in 3D pipes with known steady laminar realizations are investigated respectively. The characteristic physical and geometrical quantities of the flows are subsumed in the kinetic Reynolds number Re and a parameter $\psi$, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form $\underline{u}=u_{L}+U,\;where\;u_{L}$ is the scaled laminar velocity and periodical conditions are prescribed for U in the unbounded directions. The objects of our numerical investigations are autonomous systems (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction, where these systems (S) were received by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u.

  • PDF

유한체적법을 이용한 터보기계 회전차내부의 천이음속.층류 유동해석 (I) 익렬 유동해석 (Numerical Analysis of Transonic Laminar Flow in Turbomachinery Using Finite Volume Method(I) Cascade Flow Analysis)

  • 조강래;오종식
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.445-451
    • /
    • 1993
  • For the calculation of transonic laminar flow fields in cascades of turbomachinery, a finite volume method employing Jameson's Runge-Kutta integration scheme as a basic algorithm is presented. The cell-vertex scheme introducing half-spacing mesh cells is developed. For the velocity gradients in the stress terms the integration with divergence theorem is used for the average concept. Some numerical results show good agreement with experimental data.

레이저 유도 형광법(LIF)을 이용한 층류 메탄 예혼합 화염내 NO 농도측정에 관한 연구 (A Study on Measurement of NO Concentrations in Laminar Premxied $CH_4/O_2/N_2$ Flames by LIF)

  • 김성욱;진성호;김경수;박경석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.156-161
    • /
    • 2000
  • In this study, quantitative nitric oxide concentration distributions are investigated in the post-flame zone of laminar premixed $CH_4/O_2/N_2$, flames by laser-induced fluorescence (LIF). The measurements are taken in flames for different equivalence ratios varying from $0.8{\sim}1.4$, and flow rate is fixed as 5slpm. The NO A-X (0,0) vibrational band around 226 nm is excited using a XeCl excimer-pumped dye laser. Selecting an appropriate NO transition minimizes interferences from Rayleigh scattering and $O_2$ fluorescence. NO concentration is rised when equivalence ratios increase at different vertical distances form nozzle tip. In any case, the maximum NO concentration reaches the maximum in reaction zone.

  • PDF