Effects of propane substitution for safety improvement of hydrogen-air flame

수소-공기 화염의 안전성 향상을 위한 프로판 첨가 효과

  • Kwon, Oh-Chae (School of Mechanical Engineering, Sungkyunkwan University)
  • Published : 2004.03.30

Abstract

In order to evaluate the potential of partial hydrocarbon substitution to improve the safety of hydrogen use in general and the performance of internal combustion engines in particular, the outward propagation and development of surface cellular instability of spark-ignited spherical premixed flames of mixtures of hydrogen, hydrocarbon, and air were experimentally studied at NTP (normal temperature and pressure) condition in a constant-pressure combustion chamber. With propane being the substituent, the laminar burning velocities, the Markstein lengths, and the propensity of cell formation were experimentally determined, while the laminar burning velocities and the associated flame thicknesses were computed using a recent kinetic mechanism. Results show substantial reduction of laminar burning velocities with propane substitution, and support the potential of propane as a suppressant of both diffusional-thermal and hydrodynamic cellular instabilities in hydrogen-air flames.

Keywords

Acknowledgement

Supported by : 성균관대학교

References

  1. Rao B. Haragopala, K. N. Shrivastava, and H. N. Bhakta : 'Hydrogen for dual fuel engine operation', Int. J. Hydrogen Energy, Vol. 8, No. 5, 1983, pp. 381-384 https://doi.org/10.1016/0360-3199(83)90054-X
  2. S. R. Bell and M. Gupta : 'Extension of the lean operating limit for natural gas fueling of a spark ignited engine using hydrogen blending', Combust. Sci. Tech., Vol. 123, 1997, pp. 23-48 https://doi.org/10.1080/00102209708935620
  3. S. O. Bade Shrestha and G. A. Karim : 'Hydrogen as an additive to methane for spark ignition engine applications', Proc. Intersociety Energy Conversion Eng. Conference, Vol. 32, No. 2, 1997, pp. 910-915
  4. N. R. Baker and W. D. Van Vorst : 'Mixture properties for hydrogen supplementation of natural gas', in T. N. Veziroglu and W. Seifritz (Edi.), "Hydrogen Energy System", Pergamon, U.K., 1979, pp. 1373-1400
  5. C. G. Fotache, T. G. Kreutz, and C. K. Law : 'Ignition of hydrogen-enriched methane by heated air', Combust. Flame, Vol. 110, 1997, pp. 429-440 https://doi.org/10.1016/S0010-2180(97)00084-9
  6. J. L. Gauducheau, B. Denet, and G. Searby : 'A numerical study of lean CH4/H2/air premixed flames at high pressure', Combust. Sci. Tech., Vol. 137, 1998, pp. 81-99 https://doi.org/10.1080/00102209808952046
  7. R. Sai, J. Plaia, G. S. Jackson, and K. T. Kiger : 'Further studies on lean stability of premixed CH4/H2 flames', Proc. E. State Section Meeting for Combustion Institute, 2001, pp. 364-367
  8. M. A. DeLuchi : 'Hydrogen vehicles: an evaluation of fuel storage, performance, safety, environmental impacts, and cost', Int. J. Hydrogen Energy, Vol. 14, No. 2, 1989, pp. 81-130 https://doi.org/10.1016/0360-3199(89)90001-3
  9. J. M. Ogden : 'Developing an infrastructure for hydrogen vehicles: a Southern California case study', Int. J. Hydrogen Energy, Vol. 24, No. 8, 1999, pp. 709-730 https://doi.org/10.1016/S0360-3199(98)00131-1
  10. H. B. Mathur, L. M. Das, and T. N. Patro : 'Hydrogen fuel utilization in CI engine powered end utility systems', Int. J. Hydrogen Energy, Vol. 17, No. 5, 1992, pp. 369-374 https://doi.org/10.1016/0360-3199(92)90174-U
  11. S. Verhelst and R. Sierens : 'Aspects concerning the optimization of a hydrogen fueled engine', Int. J. Hydrogen Energy, Vol. 26, No. 9, 2001, pp. 981-985 https://doi.org/10.1016/S0360-3199(01)00031-3
  12. J. S. Badin and S. Tagore : 'Energy path way analysis a hydrogen fuel cycle framework for system studies', Int. J. Hydrogen Energy, Vol. 22, No. 4, 1997, pp. 389-395 https://doi.org/10.1016/S0360-3199(96)00097-3
  13. M. Fischer : 'Safety aspects of hydrogen combustion in hydrogen energy systems', Int. J. Hydrogen Energy, Vol. 11, No. 9, 1986, pp. 593-601 https://doi.org/10.1016/0360-3199(86)90126-6
  14. M. P. Sherman : 'Hydrogen combustion in nuclear plant accidents and associated containment loads', Nuclear Eng. Design, Vol. 82, 1984, pp. 13-24 https://doi.org/10.1016/0029-5493(84)90263-2
  15. J. H. S. Lee and A. J. Higgins : 'Comments on criteria for direct initiation of detonation', Phil. Trans. R. Soc. Lond. A, Vol. 357, 1999, pp. 3503-3521 https://doi.org/10.1098/rsta.1999.0506
  16. R. J. Natkin, X. Tang, B. Boyer, B. Oltmans, A. Denlinger, and J. W. Heffel : 'Hydrogen IC engine boosting performance and NOx study', SAE No. 2003-01-0631, 2003
  17. L. D. Landau : 'On the theory of slow combustion', Acta. Physicochem., Vol. 19, 1944, pp. 77-85
  18. C. K. Law and C. J. Sung : 'Structure, aerodynamics, and geometry of premixed flamelets', Prog. Energy Combust. Sci., Vol. 26, 2000, pp. 459-505 https://doi.org/10.1016/S0360-1285(00)00018-6
  19. O. C. Kwon, G. Rozenchan, and C. K. Law : 'Cellular instabilities and self- acceleration of outwardly propagating spherical flames', Proc. Combust. Inst., Vol. 29, 2002, pp. 1775-1783 https://doi.org/10.1016/S1540-7489(02)80215-2
  20. W. C. Reynolds : 'The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN', Stanford University, U.S.A., Department of Mechanical Engineering Report, 1986
  21. R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller : 'A FORTRAN program for modeling steady laminar one-dimensional premixed flames', Albuquerque, U.S.A., Sandia National Laboratories Report SAND85-8240, 1993
  22. Z. Qin, V. Lissianski, H. Yang, W. C. Gardiner, S. G. Davis, Jr., and H. Wang : 'Combustion chemistry of propane: a case study of detailed reaction mechanism optimization', Proc. Combust. Inst., Vol. 28, 2000, pp. 1663-1669 https://doi.org/10.1016/S0082-0784(00)80565-2
  23. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller: 'A FORTRAN computer code package for the evaluation of gas-phase, multi-component transport properties', Albuquerque, U.S.A., Sandia National Laboratories Report SAND86-8246, 1992
  24. O. C. Kwon and G. M. Faeth : 'Flame/stretch interactions of premixed hydrogen-fueled flames: measurements and predictions', Combust. Flame, Vol. 124, 2001, pp. 590-610 https://doi.org/10.1016/S0010-2180(00)00229-7
  25. C. J. Sun, C. J. Sung, L. He, and C. K. Law : 'Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters', Combust. Flame, Vol. 118, 1999, pp. 108-128 https://doi.org/10.1016/S0010-2180(98)00137-0
  26. D. Bradley, P. H. Gaskell, and X. J. Gu : 'Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: a computational study', Combust. Flame, Vol. 104, 1996, pp. 176-198 https://doi.org/10.1016/0010-2180(95)00115-8
  27. S. C. Taylor : 'Burning velocity and influence of flame stretch', University of Leeds, U.K., Ph.D. thesis, 1991
  28. M. I. Hassan, K. T. Aung, O. C. Kwon, and G. M. Faeth : 'Properties of laminar premixed hydrocarbon/air flames at various pressures', J. Prop. Power, Vol. 14, 1998, pp. 479-488 https://doi.org/10.2514/2.5304
  29. G. Rozenchan, D. L. Zhu, C. K. Law, and S. D. Tse : 'Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm', Proc. Combust. Inst., Vol. 29, 2002, pp. 1461-1470 https://doi.org/10.1016/S1540-7489(02)80179-1