• Title/Summary/Keyword: lagrangian equation

Search Result 211, Processing Time 0.025 seconds

A study on Effects of Parameters in the Lagrangian Code based on F.E.M. through Oblique Dual-Plates Perforation Phenomena (관통자에 의한 경사복판의 관통현상에서 유한요소법을 근간으로한 라그랑지 코드의 변수의 영향에 관한 연구)

  • Kim, Ha-youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.55-60
    • /
    • 2004
  • This study is concerned to the perforation phenomena of the oblique dual-plate by projectile. Experiment and simulation related to that was carried out. the variables considered in this phenomena include the electrolytic zinc coated steel sheet and carbon steel rod. In the former, the confirmation and projectile velocity possible phenomena of real phenomena is done, the latter, the effect of parameter such as time-step and grid space length is analized by using the three-dimensional Lagrangian explicit time-integration finite element code, HEMP. this code use the eight node hexahedral elements and in this study, Von-Mises Criteria is used as the strength model, Mie-Gruneisen is as the Equation of State. the simulation was performed by contrast with the experiment. through the calibration of the parameter of lagrangian code, reasonable result was approached.

  • PDF

Finite Element Analysis Piezocone Test I (피에조콘 시험의 유한요소 해석 I)

  • 김대규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.183-190
    • /
    • 2000
  • In this research, the finite element analysis of piezocone penetration and dissipation tests have been conducted using the anisotropic elastoplastic-viscoplastic bounding surface model in the Updated Lagrangian reference frame for the large deformation and finite strain nu\ature of piezocone penetration. Accordingly, virtual work equation and corresponding finite element equations have been reformulated. Theory of mixtures has been incorporated to explain the behavior of the sol. It has been observed that the viscoplastic part of the soil model affected the whole formulation. The results of the finite element analysis have been compared and investigated with the experimental results. The formulations and the results are described in part 'I' and part 'II', respectively.

  • PDF

Block Coordinate Descent (BCD)-based Decentralized Method for Joint Dispatch of Regional Electricity Markets (BCD 기반 분산처리 기법을 이용한 연계전력시장 최적화)

  • Moon, Guk-Hyun;Joo, Sung-Kwan;Huang, Anni
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.23-27
    • /
    • 2009
  • The joint dispatch of regional electricity markets can improve the overall economic efficiency of interconnected markets by increasing the combined social welfare of the interconnected markets. This paper presents a new decentralized optimization technique based on Augmented Lagrangian Relaxation (ALR) to perform the joint dispatch of interconnected electricity markets. The Block Coordinate Descent (BCD) technique is applied to decompose the inseparable quadratic term of the augmented Lagrangian equation into individual market optimization problems. The Interior Point/Cutting Plane (IP/CP) method is used to update the Lagrangian multiplier in the decomposed market optimization problem. The numerical example is presented to validate the effectiveness of the proposed decentralized method.

Design of the fuzzy sliding mode controller with double pole inverted pendulum (두개의 pole을 갖는 도립 진자의 퍼지 슬라이딩 모드 제어기 설계)

  • 강항균;한종길;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.188-191
    • /
    • 1996
  • In this paper, we derive dynamic equation of double pole inverted pendulum using Lagrangian equation, and design the fuzzy sliding mode controller. We demonstrate that the designed controller regulates double pole simultaneously regardless of cart position by computer simulation.

  • PDF

Finite Element Analysis of Piezocone Test II (피에조콘 시험의 유한요소 해석 II)

  • 김대규;김낙경
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.191-199
    • /
    • 2000
  • In this research, the finite element analysis of piezocone penetration and dissipation tests has been conducted using the anisotropic elastoplastic-viscoplastic bounding surface model, virtual work equation, and theory of mixtures formulated in the Up[dated Lagrangian reference frame for the large deformation and finite strain nature of piezocone penetration. The formulated equations have been implemented into a finite element program. The cone resistance, excess pore water pressure, and dissipation of excess pore water pressure from the finite element analysis have been compared and investigated. An effective simulation could be performed with the use of the anisotropic and viscous soil model. The finite element formulations and the results are described in part 'I' and part 'II' respectively.

  • PDF

Establishment of Design Variable of Leg Stiffness Artificial Tendon Actuator ($LeSATA^{TM}$) for Actual Control in Dorsiflexion of Metatarsophalangeal Joint at the Initial Contact while the Bi-pedal Human Walking : (1) Realization of Lagrangian Equation and Impulsive Constraint (2족 보행시 중족지절관절 초기접지기 배측굴곡의 능동적 통제를 위한 Leg Stiffness Artificial Tendon Actuator($LeSATA^{TM}$)의 설계변수 확립 : (1) Lagrangian 방정식 및 Impulsive Constraint 적용법 구현)

  • Kim, Cheol-Woong;Han, Gi-Bong;Eo, Eun-Kyoung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2010.11a
    • /
    • pp.651-652
    • /
    • 2010
  • PDF

Shape Optimization of Energy Flow Problems Using Level Set Method (레벨 셋 기법을 이용한 에너지 흐름 문제의 형상 최적화)

  • Seung-Hyun, Ha;Seonho, Cho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.411-418
    • /
    • 2004
  • Using a level set method we develop a shape optimization method applied to energy flow problems in steady state. The boundaries are implicitly represented by the level set function obtainable from the 'Hamilton-Jacobi type' equation with the 'Up-wind scheme.' The developed method defines a Lagrangian function for the constrained optimization. It minimizes a generalized compliance, satisfying the constraint of allowable volume through the variations of implicit boundary. During the optimization, the boundary velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian function. Compared with the established topology optimization method, the developed one has no numerical instability such as checkerboard problems and easy representation of topological shape variations.

  • PDF

EEG model by statistical mechanics of neocortical interaction

  • Park, J.M.;Whang, M.C.;Bae, B.H.;Kim, S.Y.;Kim, C.J.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.15-27
    • /
    • 1997
  • Brain potential is described using the mesocolumnar activity defined by averaged firings of excitatory and inhibitory neuron of neocortex. Lagrangian is constructed based on SMNI(Statistical Mechanics of Neocortical Interaction) and then Euler Lagrange equation is obtained. Excitatory neuron firing is assumed to be amplitude- modulated dominantly by the sum of two modes of frequency .omega. and 2 .omega. . Time series of this neuron firing is calculated numerically by Euler Lagrangian equation. I .omega. L related to low frequency distribution of power spectrum, I .omega. H hight frequency, and Sd(standard deviation) were introduced for the effective extraction of the dynamic property in the simulated brain potential. The relative behavior of I .omega. L, I .omega. H, and Sd was found by parameters .epsilon. and .gamma. related to nonlinearity and harmonics respectively. Experimental I .omega L, I .omega. H, and Sd were obtained from EEG of human in rest state and of canine in deep sleep state and were compared with theoretical ones.

  • PDF

Finite element procedure of initial shape determination for hyperelasticity

  • Yamada, Takahiro
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.173-183
    • /
    • 1998
  • In the shape design of flexible structures, it is useful to predict the initial shape from the desirable large deformed shapes under some loading conditions. In this paper, we present a numerical procedure of an initial shape determination problem for hyperelastic materials which enables us to calculate an initial shape corresponding to the prescribed deformed shape and boundary condition. The present procedure is based on an Arbitrary Lagrangian-Eulerian (ALE) finite element method for hyperelasticity, in which arbitrary change of shapes in both the initial and deformed states can be treated by considering the variation of geometric mappings in the equilibrium equation. Then the determination problem of the initial shape can be formulated as a nonlinear problem to solve the unknown initial shape for the specified deformed shape that satisfies the equilibrium equation. The present approach can be implemented easily to the finite element method by employing the isoparametric hypothesis. Some basic numerical results are also given to characterize the present procedure.