A Semi-Lagrangian method based on CIP(Cubic Interpolated Pseudoparticle)method is proposed and it is applied to solve the two dimensional advection equation. Especially the attentions are given to settle the pole problem and to enhance the accuracy in solving the advection equation on the spherical coordinate system. Tn this algorithm, the CU method is employed as the Semi-Lagrangian method and extended to the spherical coordinate system. To enhance the accuracy of the solution, the spatial discretization is made by CIP method. The mathematical formulation and numerical results are also described. To verify the efficiency, accuracy and capability of proposed algorithm, two dimensional rotating cosine bell problem and the frontogenesis problem are simulated by the present scheme. As results, it is confirmed that the present scheme gives an accurate solution and settles the pole problem in the advection equation on the sphere.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.6
no.1
/
pp.1-15
/
2002
Advection-dominated transport problems possess difficulties in the design of numerical methods for solving them. Because of the hyperbolic nature of advective transport, many characteristic numerical methods have been developed such as the classical characteristic method, the Eulerian-Lagrangian method, the transport diffusion method, the modified method of characteristics, the operator splitting method, the Eulerian-Lagrangian localized adjoint method, the characteristic mixed method, and the Eulerian-Lagrangian mixed discontinuous method. In this paper relationships among these characteristic methods are examined. In particular, we show that these sometimes diverse methods can be given a unified formulation. This paper focuses on characteristic finite element methods. Similar examination can be presented for characteristic finite difference methods.
Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.
Journal of the Computational Structural Engineering Institute of Korea
/
v.23
no.6
/
pp.675-682
/
2010
The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.
ELM, a characteristic line based method, was applied to advection-dispersion equation, and the results obtained were compared with those of Eulerian schemes(Stone-Brian and QUICKEST). The calculation methods consisted of Lagrangian interpolation scheme and cubic spline interpolation scheme for the advection calculation, and the Crank-Nicholson scheme for the dispersion calculation. The results of numerical methods were as follows: (1) for Gaussian hill: ELM, using Lagrangian interpolation scheme, gave the most accurate computational result, ELM, using cubic spline interpolation scheme, and QUICKEST scheme gave numerical damping for Peclet number 50. Stone-Brian scheme gave phase shift introduced in the numerical solution for Peclet number 10 and 50. (2) for advanced front: All schemes gave accurate computational results for Peclet number 1 and 4. ELM, Lagrangian interpolation scheme, and Stone,Brian scheme gave dissipation error and ELM, using cubic spline interpolation scheme, and QUICKEST scheme gave numerical oscillation for Peclet number 50.
The method of moments, a Lagrangian scheme, considers the zeroth, first, and second moments of the grid cell spatial distributions of the concentration and then advects the concentration by maintaining conservation of the moments. The reasonable inital description of the first and second moments as well as the mean concentration, the zeroth moments, in grid element is important in the method of moments. In this study, the description methods of each initial moment are reviewed, and the method of moments is extended to overcome the restrictions of Courant number. Its performance is compared with those of available Eulerian and Lagrangian schemes. As the results, the method is successfully extended to overcome the stability restriction and is an accurate scheme for the advection simulation of concentration distribution, especially of which the gradient is steep. In addition, the method is very promising scheme in terms of computational efficiency when the mixing is confined in a relatively small region to the entire domain in two-dimensional problem.
To realistically simulate fluid, the Navier-Stokes equations are generally used. Solving these Navier-Stokes equations on the Eulerian framework, the non-linear advection terms invoke heavy computation and thus Semi-Lagrangian methods are used as an approximated way of solving them. In the Semi-Lagrangian methods, the locations of advection sources are traced and the physical values at the traced locations are interpolated. In the case of Stam's method, there are relatively many chances of numerical losses, and thus there have been efforts to correct these numerical errors. In most cases, they have focused on the numerical interpolation processes, even simultaneously using particle-based methods. In this paper, we propose a new approach to reduce the numerical losses, through improving the tracing method during the advection calculations, without any modifications on the Eulerian framework itself. In our method, we trace the grids with the velocities which will let themselves to be moved to the current target position, differently from the previous approaches, where velocities of the current target positions are used. From the intuitive point of view, we adopted the simple physical observation: the physical quantities at a specific position will be moved to the new location due to the current velocity. Our method shows reasonable reduction on the numerical losses during the smoke simulations, finally to achieve real-time processing even with enhanced realities.
Various Eulerian-Lagrangian numerical models for the one-dimensional longitudinal dispersion equation are studied comparatively. In the model studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing adveciton and the other dispersion. The advection equation has been solved using the method of characteristics following fluid particles along the characteristic line and the results are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpolation polynomials are superior to Lagrange interpolation polynomials in reducing dissipation and dispersion errors in the simulation.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.10
no.1
/
pp.37-44
/
1998
In this study a new hybrid method is developed for solving flow-dominated transport problems accurately and effectively. The method takes the forward-tracking particle method for advection. However, differently from the random-walk Lagrangian approach it solves the diffusion process on the fixed Eulerian grids. Therefore, neither any interpolating algorithm nor a large enough number of particles is required. The method was successfully examined for both cases of instantaneous and continuous sources released at a point. Comparison with a surrounding 5-point Hermite polynomial method (Eulerian-Lagrangian method) and the random-walk pure Lagrangian method shows that the present method is superior in result accuracy and time-saving ability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.