• Title/Summary/Keyword: lagrange

Search Result 836, Processing Time 0.026 seconds

A Fast Inversion Method for Interpreting Single-Hole Electromagnetic Data (단일 시추공 전자탐사 자료 해석을 위한 빠른 역산법)

  • Kim, Hee-Joon;Lee, Jung-Mo
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.316-322
    • /
    • 2002
  • A computationally efficient inversion scheme has been developed using the extended Born or localized nonlinear approximation to analyze electromagnetic fields obtained in a single-hole environment. The medium is assumed to be cylindrically symmetric about the borehole, and to maintain the symmetry vertical magnetic dipole source is used throughout. The efficiency and robustness of an inversion scheme is very much dependent on the proper use of Lagrange multiplier, which is often provided manually to achieve desired convergence. In this study, an automatic Lagrange multiplier selection scheme has been developed to enhance the utility of the inversion scheme in handling field data. The inversion scheme has been tested using synthetic data to show its stability and effectiveness.

A Study on Periodic Review Inventory System under Stochastic Budget Constraint (확률적 예산 제약을 고려한 주기적 재고관리 정책에 대한 연구)

  • Lee, Chang-Yong;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.165-171
    • /
    • 2014
  • We develop an optimization algorithm for a periodic review inventory system under a stochastic budget constraint. While most conventional studies on the periodic review inventory system consider a simple budget limit in terms of the inventory investment being less than a fixed budget, this study adopts more realistic assumption in that purchasing costs are paid at the time an order is arrived. Therefore, probability is employed to express the budget constraint. That is, the probability of total inventory investment to be less than budget must be greater than a certain value assuming that purchasing costs are paid at the time an order is arrived. We express the budget constraint in terms of the Lagrange multiplier and suggest a numerical method to obtain optional values of the cycle time and the safety factor to the system. We also perform the sensitivity analysis in order to investigate the dependence of important quantities on the budget constraint. We find that, as the amount of budget increases, the cycle time and the average inventory level increase, whereas the Lagrange multiplier decreases. In addition, as budget increases, the safety factor increases and reaches to a certain level. In particular, we derive the condition for the maximum safety factor.

Free vibration analysis of rectangular plate with arbitrary edge constraints using characteristic orthogonal polynomials in assumed mode method

  • Kim, Kook-Hyun;Kim, Byung-Hee;Choi, Tae-Muk;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.267-280
    • /
    • 2012
  • An approximate method based on an assumed mode method has been presented for the free vibration analysis of a rectangular plate with arbitrary edge constraints. In the presented method, natural frequencies and their mode shapes of the plate are calculated by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. Characteristic orthogonal polynomials having the property of Timoshenko beam functions which satisfies edge constraints corresponding to those of the objective plate are used. In order to examine the accuracy of the proposed method, numerical examples of the rectangular plates with various thicknesses and edge constraints have been presented. The results have shown good agreement with those of other methods such as an analytic solution, an approximate solution, and a finite element analysis.

A Study on the Fatigue Life Prediction and Evaluation of Rubber Components for Automobile Vehicle (자동차 방진고무부품의 피로수명 예측 및 평가)

  • Woo, Chang-Su;Kim, Wan-Doo;Kwon, Jae-Do
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.56-62
    • /
    • 2005
  • The fatigue analysis and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. Fatigue lifetime prediction methodology of the rubber component was proposed by incorporating the finite element analysis and fatigue damage parameter from fatigue test. Finite element analysis of 3D dumbbell specimen and rubber component were performed based on a hyper-elastic material model determined from material test. The Green-Lagrange strain at the critical location determined from the FEM was used for evaluating the fatigue damaged parameter of the natural rubber. Fatigue life of the rubber component are predicted by using the fatigue damage parameter at the critical location. Predicted fatigue lifes of the rubber component agreed fairly well the experimental fatigue lives.

Power Control in RF Energy Harvesting Networks (무선 에너지 하비스팅 네트워크에서의 전력 제어 기법)

  • Hwang, Yu Min;Shin, Dong Soo;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.51-55
    • /
    • 2017
  • This paper aims to maximize the energy harvesting rate and channel capacity in RF-energy harvesting networks (RF-EHNs) under the constraints of maximum transmit power and minimum quality of service (QoS) in terms of rate capacity for each user. We study a multi-user RF-EHN with frequency division multiple access (FDMA) in a Rayleigh channel. An access point (AP) simultaneously transmitting wireless information and power in the RF-EHN serves a subset of active users which have a power-splitting antenna. To gauge the network performance, we define energy efficiency (EE) and propose an optimization solution for maximizing EE with Lagrangian dual decomposition theory. In simulation results, we confirm that the EE is effectively maximized by the proposed solution with satisfying the given constraints.

A Study on Efficient Interpolation Method in Salt & Pepper Noise Environments (Salt & Pepper 잡음 환경에서 효율적인 보간법에 관한 연구)

  • Ko, You-Hak;Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.681-683
    • /
    • 2017
  • In the digital information age, image processing is essential for various digital devices such as smart phones, cameras, and TVs. However, degradation occurs in analyzing, recognizing, and processing image data, and salt & pepper noise occurs. Therefore, in this paper, we applied linear interpolation method, newton interpolation method, lagrange interpolation method, and spline interpolation method to the image damaged by salt & pepper noise in order to find more effective interpolation method in salt & pepper noise environment, The methods were compared using the PSNR (peak signal to noise ratio).

  • PDF

A Comparative Study on Spatial and Temporal Line Interpolation of Characteristic Method (공간 및 시간준위 보간 특성곡선법의 비교연구)

  • 백중철;배덕효
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.203-212
    • /
    • 1996
  • The subject research attempts to develop a new temporal interpolation scheme for the method of characteristics. The proposed three-point time-line Lagrange interpolation Reachback (3PR) method is a temporal quadratic interpolation scheme using the three grid points near the intersection between a characteristic line and a previous time-line. The accuracy of the 3PR method is compared with those of temporal and spatial interpolation schemes such as Reachback, Upwind, and quandratic spatial interpolation methods for two pure advection problems. The results show that on the aspects of the numerical damping and/or oscillation the temporal interpolation schemes are better than the spatial ones under the same interpolation order conditions. In addition, the spatial ones under the same interpolation order conditions. In addition, the proposed 3PR method improves the accuracy of Reachback method as well as it contains the merits of time-line interpolation schemes.

  • PDF

A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation

  • Shamshirsaz, Mahnaz;Sharafi, Shahin;Rahmatian, Javad;Rahmatian, Sajad;Sepehry, Naserodin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.407-426
    • /
    • 2020
  • In this present paper, a semi-analytical mesh-free method is employed for the three-dimensional free vibration analysis of a bi-directional functionally graded piezoelectric circular structure. The dependent variables have been expanded by Fourier series with respect to the circumferential direction and have been discretized through radial and axial directions based on the mesh-free shape function. The current approach has a distinct advantage. The nonlinear Green-Lagrange strain is employed as the relationship between strain and displacement fields to observe thermal impacts in stiffness matrices. Nevertheless, high order terms have been neglected at the final steps of equations driving. The material properties are assumed to vary continuously in both radial and axial directions simultaneously in accordance with a power law distribution. The convergence and validation studies are conducted by comparing our proposed solution with available published results to investigate the accuracy and efficiency of our approach. After the validation study, a parametric study is undertaken to investigate the temperature effects, different types of polarization, mechanical and electric boundary conditions and geometry parameters of structures on the natural frequencies of functionally graded piezoelectric circular structures.

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

The Impact of Operating Cash Flows on Financial Stability of Commercial Banks: Evidence from Pakistan

  • ELAHI, Mustahsan;AHMAD, Habib;SHAMAS UL HAQ, Muhammad;SALEEM, Ali
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.11
    • /
    • pp.223-234
    • /
    • 2021
  • This study aims to examine whether operating cash flows influence banks' financial stability in Pakistan. The study employed annual panel data collected from annual reports of 20 commercial banks listed on the Pakistan Stock Exchange for the year 2011 to 2019. Free cash flow yield was taken as the dependent variable while cash flow ratio was selected as the independent variable, and net interest margin, income diversification, asset quality, financial leverage, the cost to income ratio, advance net of provisions to total assets ratio, capital ratio, financial performance, breakup value per share and bank size were taken as control variables. The study performed ordinary least square technique, random and fixed effects models, Hausman test, Lagrange multiplier test, descriptive and correlation analysis. Results showed that operating cash flows and net interest margin significantly and positively influenced banks' financial stability while the cost to income ratio and advances net of provisions to total assets ratio significantly and negatively associated with banks' financial stability. To improve financial stability, banks should become more cost-effective and enhance their liquidity levels by lowering lending activities. In the future, it would be useful to compare commercial and investment banks, also Islamic and conventional banks in the same research setting.