Browse > Article
http://dx.doi.org/10.12989/sem.2020.73.4.407

A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation  

Shamshirsaz, Mahnaz (New Technologies Research Center, Amirkabir University of Technology)
Sharafi, Shahin (New Technologies Research Center, Amirkabir University of Technology)
Rahmatian, Javad (New Technologies Research Center, Amirkabir University of Technology)
Rahmatian, Sajad (New Technologies Research Center, Amirkabir University of Technology)
Sepehry, Naserodin (New Technologies Research Center, Amirkabir University of Technology)
Publication Information
Structural Engineering and Mechanics / v.73, no.4, 2020 , pp. 407-426 More about this Journal
Abstract
In this present paper, a semi-analytical mesh-free method is employed for the three-dimensional free vibration analysis of a bi-directional functionally graded piezoelectric circular structure. The dependent variables have been expanded by Fourier series with respect to the circumferential direction and have been discretized through radial and axial directions based on the mesh-free shape function. The current approach has a distinct advantage. The nonlinear Green-Lagrange strain is employed as the relationship between strain and displacement fields to observe thermal impacts in stiffness matrices. Nevertheless, high order terms have been neglected at the final steps of equations driving. The material properties are assumed to vary continuously in both radial and axial directions simultaneously in accordance with a power law distribution. The convergence and validation studies are conducted by comparing our proposed solution with available published results to investigate the accuracy and efficiency of our approach. After the validation study, a parametric study is undertaken to investigate the temperature effects, different types of polarization, mechanical and electric boundary conditions and geometry parameters of structures on the natural frequencies of functionally graded piezoelectric circular structures.
Keywords
3D free vibration; functionally graded piezoelectric circular structures; nonlinear Green-Lagrange strain; mesh-free method; semi-analytical method;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Amini, Y., Emdad, H. and Farid, M. (2015), "Finite element modeling of functionally graded piezoelectric harvesters", Compos. Struct., 129, 165-176. https://doi.org/10.1016/j.compstruct.2015.04.011.   DOI
2 Asgari, M. and Akhlaghi, M. (2010), "Transient thermal stresses in two-dimensional functionally graded thick hollow cylinder with finite length", Arch. Appl. Mech., 80(4), 353-376. https://doi.org/10.1007/s00419-009-0321-2.   DOI
3 Atluri, S.N., Kim, H.-G. and Cho, J.Y. (1999), "A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods", Comput. Mech., 24(5), 348-372. https://doi.org/10.1007/s004660050457.   DOI
4 Behjat, B. and Khoshravan, M. (2012), "Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates", Compos. Struct., 94(3), 874-882. https://doi.org/10.1016/j.compstruct.2011.08.024.   DOI
5 Behjat, B., Salehi, M., Sadighi, M., Armin, A. and Abbasi, M. (2009), "Static, dynamic, and free vibration analysis of functionally graded piezoelectric panels using finite element method", J. Intelligent Mater. Syst. Struct., 20(13), 1635-1646. https://doi.org/10.1177/1045389X09104113.   DOI
6 Benlahcen, F., Belakhdar, K., Sellami, M. and Tounsi, A. (2018), "Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation", Steel Compos. Struct., 29(5), 591-602. http://dx.doi.org/10.12989/scs.2017.25.2.187.   DOI
7 Bodaghi, M., Damanpack, A., Aghdam, M. and Shakeri, M. (2012), "Non-linear active control of FG beams in thermal environments subjected to blast loads with integrated FGP sensor/actuator layers", Compos. Struct., 94(12), 3612-3623. https://doi.org/10.1016/j.compstruct.2012.06.001.   DOI
8 Bodaghi, M. and Shakeri, M. (2012), "An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads", Compos. Struct., 94(5), 1721-1735. https://doi.org/10.1016/j.compstruct.2012.01.009.   DOI
9 Dai, H.-L. and Rao, Y.-N. (2011), "Investigation on electromagnetothermoelastic interaction of functionally graded piezoelectric hollow spheres", Struct. Eng. Mech., 40(1), 49-64. http://dx.doi.org/10.12989/sem.2011.40.1.049.   DOI
10 Chuaqui, T. and Roque, C. (2017), "Analysis of functionally graded piezoelectric Timoshenko smart beams using a multiquadric radial basis function method", Compos. Struct., 176, 640-653. https://doi.org/10.1016/j.compstruct.2017.05.062.   DOI
11 Foroutan, M., Mohammadi, F., Alihemati, J. and Soltanimaleki, A. (2017), "Dynamic analysis of functionally graded piezoelectric cylindrical panels by a three-dimensional mesh-free model", J. Intelligent Mater. Syst. Struct., 28(18), 2516-2527. https://doi.org/10.1177/1045389X17689941.   DOI
12 Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.   DOI
13 Ghasemabadian, M. and Kadkhodayan, M. (2016), "Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions", Struct. Eng. Mech., 60(2), 271-299. http://dx.doi.org/10.12989/sem.2016.60.2.271.   DOI
14 Jodaei, A., Jalal, M. and Yas, M. (2013), "Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates via SSDQM and comparative modeling by ANN", Math. Comput. Model., 57(5-6), 1408-1425. https://doi.org/10.1016/j.mcm.2012.12.002.   DOI
15 Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., 28(6), 735-748. http://dx.doi.org/10.12989/scs.2018.28.6.735.   DOI
16 Kruusing, A. (2000), "Analysis and optimization of loaded cantilever beam microactuators", Smart Mater. Struct., 9(2), 186. https://doi.org/10.1088/0964-1726/9/2/309   DOI
17 Li, Y. and Shi, Z. (2009), "Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature", Compos. Struct., 87(3), 257-264. https://doi.org/10.1016/j.compstruct.2008.01.012.   DOI
18 Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1.   DOI
19 Larkin, K. and Abdelkefi, A. (2019), "Neutral axis modeling and effectiveness of functionally graded piezoelectric energy harvesters", Compos. Struct., 213, 25-36. https://doi.org/10.1016/j.compstruct.2019.01.067.   DOI
20 Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2013), "An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams", Compos. Struct., 104, 71-84. https://doi.org/10.1016/j.compstruct.2013.04.010.   DOI
21 Liu, C.-F. and Lee, Y.-T. (2000), "Finite element analysis of three-dimensional vibrations of thick circular and annular plates", J. Sound Vib., 233(1), 63-80. https://doi.org/10.1006/jsvi.1999.2791.   DOI
22 Liu, G.-R. and Gu, Y.-T. (2005), An Introduction to Meshfree Methods and Their Programming, Springer Science & Business Media, Germany.
23 Lu, C., Lim, C.W. and Chen, W. (2009), "Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions", J. Numeric. Methods Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555.   DOI
24 Mikaeeli, S. and Behjat, B. (2016), "Three-dimensional analysis of thick functionally graded piezoelectric plate using EFG method", Compos. Struct., 154, 591-599. https://doi.org/10.1016/j.compstruct.2016.07.067.   DOI
25 Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. http://dx.doi.org/10.12989/scs.2018.29.3.363.   DOI
26 Qiu, J., Tani, J., Ueno, T., Morita, T., Takahashi, H. and Du, H. (2003), "Fabrication and high durability of functionally graded piezoelectric bending actuators", Smart Mater. Struct., 12(1), 115. https://doi.org/10.1088/0964-1726/12/1/313.   DOI
27 Nie, G. and Zhong, Z. (2007), "Semi-analytical solution for three-dimensional vibration of functionally graded circular plates", Comput. Methods Appl. Mech. Eng., 196(49-52), 4901-4910. https://doi.org/10.1016/j.cma.2007.06.028.   DOI
28 Nie, G. and Zhong, Z. (2010), "Dynamic analysis of multi-directional functionally graded annular plates", Appl. Math. Model., 34(3), 608-616. https://doi.org/10.1016/j.apm.2009.06.009.   DOI
29 Priya, S. and Inman, D.J. (2009), Energy Harvesting Technologies, Springer, Germany. https://doi.org/10.1007/978-0- 387-76464-1.
30 Qian, L. and Batra, R. (2005), "Design of bidirectional functionally graded plate for optimal natural frequencies", J. Sound Vib., 280(1-2), 415-424. https://doi.org/10.1016/j.jsv.2004.01.042.   DOI
31 Sheng, G. and Wang, X. (2010), "Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells", Appl. Math. Model., 34(9), 2630-2643. https://doi.org/10.1016/j.apm.2009.11.024.   DOI
32 Tsai, Y.-H. and Wu, C.-P. (2008), "Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions", J. Eng. Sci., 46(9), 843-857. https://doi.org/10.1016/j.ijengsci.2008.03.005.   DOI
33 Wang, Y., Xu, R. and Ding, H. (2010), "Analytical solutions of functionally graded piezoelectric circular plates subjected to axisymmetric loads", Acta Mechanica, 215(1-4), 287-305. https://doi.org/10.1007/s00707-010-0332-7.   DOI
34 Wu, C.-P. and Huang, H.-Y. (2019), "A semianalytical finite element method for stress and deformation analyses of bi-directional functionally graded truncated conical shells", Mech. Based Design Struct. Machines, 1-26. https://doi.org/10.1080/15397734.2019.1636657.
35 Wu, C.C., Kahn, M. and Moy, W. (1996), "Piezoelectric ceramics with functional gradients: a new application in material design", J. American Ceramic Soc., 79(3), 809-812. https://doi.org/10.1111/j.11512916.1996.tb07951.x.   DOI
36 Wu, C.-P. and Li, H.-Y. (2013), "An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions", CMC-Comput. Mater. Continua, 34(1), 27-62. DOI:10.3970/cmc.2013.034.027.
37 Wu, C.-P. and Liu, Y.-C. (2016), "A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells", Compos. Struct., 147, 1-15. https://doi.org/10.1016/j.compstruct.2016.03.031.   DOI
38 Wu, C.-P. and Liu, Y.-C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.   DOI
39 Wu, C.-P. and Tsai, Y.-H. (2009), "Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation", J. Eng. Math., 63(1), 95. https://doi.org/10.1007/s10665-008-9234-2.   DOI
40 Wu, C.-P. and Yang, S.-W. (2011), "A semi-analytical element-free Galerkin method for the 3D free vibration analysis of multilayered FGM circular hollow cylinders", J. Intelligent Mater. Syst. Struct., 22(17), 1993-2007. https://doi.org/10.1177/1045389X11421822.   DOI
41 Wu, X.-H., Shen, Y.-P. and Chen, C. (2003), "An exact solution for functionally graded piezothermoelastic cylindrical shell as sensors or actuators", Mater. Lett., 57(22-23), 3532-3542. https://doi.org/10.1016/S0167-577X(03)00121-6.   DOI
42 Xiong, Q.-l. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., 25(2), 187-196. http://dx.doi.org/10.12989/scs.2017.25.2.187.   DOI
43 Almajid, A., Taya, M., Takagi, K., Li, J.-F. and Watanabe, R. (2002). "Fabrication and modeling of porous FGM piezoelectric actuators", Smart Structures and Materials 2002: Smart Structures and Integrated Systems, 5764. https://doi.org/10.1117/12.474683
44 Yas, M. and Moloudi, N. (2015), "Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method", Appl. Math. Mech., 36(4), 439-464. https://doi.org/10.1007/s10483-015-1923-9.   DOI
45 Zhong, Z. and Shang, E. (2003), "Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate", J. Solids Struct., 40(20), 5335-5352. https://doi.org/10.1016/S0020-7683(03)00288-9.   DOI
46 Zhu, X. and Meng, Z. (1995), "Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator", Sensors Actuators A Phys., 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.   DOI
47 Allahverdizadeh, A., Naei, M. and Bahrami, M.N. (2008), "Vibration amplitude and thermal effects on the nonlinear behavior of thin circular functionally graded plates", J. Mech. Sci., 50(3), 445-454. https://doi.org/10.1016/j.ijmecsci.2007.09.018.   DOI