• Title/Summary/Keyword: lactide

Search Result 277, Processing Time 0.025 seconds

The Release of Albumin from PLGA and PCL Wafers Containing Natural and Synthetic Additives for Protein Delivery (단백질 전달체로서 천연 및 합성재료의 첨가에 따른 PLGA와 PCL웨이퍼로부터 알부민의 방출거동)

  • Hyun Hoon;Lee Jae Ho;Seo Kwang Su;Kim Moon Suk;Rhee Jhon M.;Lee Hai Bang;Khang Gilson
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.468-474
    • /
    • 2005
  • PLGA and PCL copolymers initiated by carbitol as drug carriers were synthesized by ring-opening polymerization of L-lactide (LA), glycolide (GA), and $\varepsilon-caprolactone(\varepsilon-CL)$. Implantable wafers were simply fabricated by direct compression method after physical mixing of copolymers and bovine serum albumin-fluorescein isothiocyanate (BSA-FITC) as a model protein drug. The release amounts of BSA-FITC from wafers were determined by fluorescence intensity using the fluorescence spectrophotometer. Also, the release behavior of BSA-FITC on wafers was controlled by adding the additives such as collagen, small intestinal submucosa (SIS), poly(vinyl pyrrolidone) (PVP), and poly(thylene glycol) (PEG). The wafer prepared by PLGA and PCL exhibited slow release within $10\%$ for 30 days. But, those prepared by a variety of additives exhibited the controlled BSA release patterns with a dependence on the additive contents. furthermore, the wafers containing natural materials such as collagen and SIS showed more zero-order release profile than that with synthetic materials such as PVP and PEG. It was confirmed that the release of BSA from implantable wafers could be easily controlled by adding natural additives.

Preparation and Release Behavior of Ipriflavone-Loaded PLGA Microsphere for Tissue Engineered Bone (이프리플라본을 함유한 생분해성 PLGA 미립구의 제조 및 조직공학적 골재생을 위한 영향평가)

  • So, Jung-Won;Jang, Ji-Wook;Kim, Soon-Hee;Kim, Geun-Ah;Choi, Jin-Hee;Rhee, John-M.;Son, Young-Suk;Min, Byoung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.26-32
    • /
    • 2009
  • The aim of this research was to prepare microparticulate systems based on poly (lactide-co-glycolide)(PLGA) for the local release of ipriflavone in order to reduce bone loss. We developed the IP loaded PLGA microspheres using relatively simple oil-in-water(O/W) solvent evaporation method. HPLC was used to perform the in vitro release test of IP and morphology of cell attached on the micro-spheres was investigated using SEM. Cytotoxicity was assayed by cell counting kit-8 (CCK-8) test. Osteogenic differential cells were analyzed by ALP activity. Through RT-PCR analysis, we observed osteocalcin, ALP, and Type I collagen mRNA expression. The release of IP in vitro was more prolonged over 42 days and IP/PLGA microspheres showed the improvement on the cell proliferation, ALP activity and RT-PCR comparing with control (only PLGA). This initial research will be used to direct future work involved in developing this composite injectable bone tissue engineering system.

Miscibility of Melt-mixed PLLA/PMMA Blends for Optical Film Application (광학 필름 적용을 위한 용융혼합된 PLLA/PMMA 블렌드의 상용성 연구)

  • Park, Eun Ju;Kim, In Seok;Park, Sang Seok;Lee, Ho Sang;Lee, Moo Sung
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.744-752
    • /
    • 2013
  • The miscibility between poly(L-lactide) (PLLA) and poly(methyl methacrylate) (PMMA) was investigated using thermal analyses for the purpose of developing birefringence-free material at oriented state. The effect of methyl acrylate (MA) units as comonomer of PMMA on the miscibility was also studied. All the blends prepared in this study show composition-dependent single $T_g$'s between those of blend components and high transparency over the visible region, indicating the miscibility at molecular level and no discernible effect of MA units on it. No phase separation was observed at elevated temperature of $280^{\circ}C$, higher than the degradation of PLLA and PMMA. The interaction energy density in PLLA/PMMA blends with 17 mol% of MA was measured to be $-0.74J/cm^3$ from the equilibrium melting temperature depression based on the Hoffman-Weeks method. The blends show zero-${\Delta}$n behavior at a specific mixing ratio and the drawing ratio of 3 due to compensation of intrinsic orientation birefringence. Birefringence dispersion of PLLA/PMMA5 blends was also measured to examine the possibility for quarter-wave plates or polarizer protective films.

A comparison of chlorhexidine release rate from three polymeric controlled release drug prototypes (제어방출형 소독제의 약물전달 체로 사용된 폴리머 유형에 따른 클로르헥시딘 제어 방출속도 비교)

  • Bok Young-Bin;Lee Doug-Youn;Lee Chang-Young;Kim Kyung-Nam;Kum Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.548-552
    • /
    • 2004
  • Intracanal disinfection of infected root canal is one of important treatment procedure. This in vitro study aimed to evaluate whether the surface polymers of controlled release drug (CRD) can effectively control the release rate of chlorhexidine for root canal disinfection. Four CRD prototypes were prepared: Group A (n=12); The core device (absorbent paper point) was loaded with 40% CHX solution as control. Group B (n=12); same as group A, but the device was coated with chitosan. Group C (n=12); same as group A and then coated three times with 5% PMMA. Group D (n=12); same as group A and then coated three times with 3% PLGA. All CRD prototypes were soaked in 3 mL distilled water for experimental periods and the concentrations of released CHX from each CRD prototype were determined using a UV spectrophotometer. Results showed that release rate of CHX were the greatest in the non-coated group (control group), followed by the chitosan-coated group, the PLGA-coated group, and the PMMA-coated group (P < 0.05). This data indicate that surface polymers can control the release rate of CHX from the CRD prototypes.

Effect of Cosurfactants on the Release Behavior of Zaltoprofen-loaded PLGA Microspheres in In Vitro : Preparation and Characterization (보조계면활성제 첨가에 따른 잘토프로펜을 함유한 PLGA 미립구의 생체외 방출 거동: 제조 및 특성)

  • Eom, Shin;Yoo, Seok-Cheol;Kim, Yong-Ki;Lee, Young-Hyun;Lee, Eun-Yong;Yu, Hyeon;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • Zaltoprofen, a propionic acid derivative non-steroidal anti-inflammatory drug (NSAID), is known to have powerful inhibitory effects on acute, subacute and chronic inflammation. We developed poly(lactide-co-glycolide)(PLGA) microspheres loaded with zaltoprofen for sustained controlled delivery using an oil-water solvent evaporation methods by varying PLGA molecular weight and cosurfactant contents. Physicochemical properties and morphology of zaltoprofen-loaded PLGA microspheres were investigated by scanning electron microscope, X-ray diffraction and differential scanning calorimeter. The size of microspheres increased with the molecular weight of PLGA and the content of cosurfactants. The increase of PLGA molecular weight and cosurfactant content decreased the porosity of microspheres, subsequently resulting in the slow drug release. The results demonstrated that the adjustment of PLGA molecular weight and the cosurfactant content allowed us to control the drug release profiles of drug-loaded microspheres.

Adhesion and Proliferation Behavior of Retinal Pigment Epithelial Cells on Hesperidin/PLGA Films (헤스페리딘/PLGA 필름에서 망막색소상피세포의 부착과 증식거동)

  • Lee, So Jin;Kang, Su Ji;Kim, Hye Yun;Lee, Jung Hwan;Kim, Eun Young;Kwon, Soon Yong;Chung, Jin Wha;Joo, Choun-Ki;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • Retinal pigment epithelium (RPE) plays an important role in maintaining the visual function and the degeneration of the RPE causes several retinal degeneration disease. In order to fabricate the suitable carrier for RPE transplantation, the hybrid poly(lactide-co-glycolide) (PLGA) film with hesperidin was prepared. Hesperidin has an anti-inflammatory and antioxidant characteristics. ARPE-19 was seeded on hesperidin/PLGA film and then, cell proliferation was determined by the MTT assay, and cell adhesion and cell morphology were confirmed by SEM. Also, RT-PCR was performed to confirm the expression of the specific genes, and AEC immunohistochemical staining was performed to determine the expression of RPE65. As a result, we confirmed that attachment, proliferation and phenotype maintenance of RPE cells were more excellent on hesperidin/PLGA film than PLGA film, thereby we were able to confirm the potential applications of hesperidin/PLGA film as tissue engineering carrier for regeneration of retina.

Enhanced Drug Carriage Efficiency of Curcumin-Loaded PLGA Nanoparticles in Combating Diabetic Nephropathy via Mitigation of Renal Apoptosis

  • Asmita Samadder;Banani Bhattacharjee;Sudatta Dey;Arnob Chakrovorty;Rishita Dey;Priyanka Sow;Debojyoti Tarafdar;Maharaj Biswas;Sisir Nandi
    • Journal of Pharmacopuncture
    • /
    • v.27 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • Background: Diabetic nephropathy (DN) is one of the major complications of chronic hyperglycaemia affecting normal kidney functioning. The ayurvedic medicine curcumin (CUR) is pharmaceutically accepted for its vast biological effects. Objectives: The Curcuma-derived diferuloylmethane compound CUR, loaded on Poly (lactide-co-glycolic) acid (PLGA) nanoparticles was utilized to combat DN-induced renal apoptosis by selectively targeting and modulating Bcl2. Methods: Upon in silico molecular docking and screening study CUR was selected as the core phytocompound for nanoparticle formulation. PLGA-nano-encapsulated-curcumin (NCUR) were synthesized following standard solvent displacement method. The NCUR were characterized for shape, size and other physico-chemical properties by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared (FTIR) Spectroscopy studies. For in vivo validation of nephro-protective effects, Mus musculus were pre-treated with CUR at a dose of 50 mg/kg b.w. and NCUR at a dose of 25 mg/kg b.w. (dose 1), 12.5 mg/kg b.w (dose 2) followed by alloxan administration (100 mg/kg b.w) and serum glucose levels, histopathology and immunofluorescence study were conducted. Results: The in silico study revealed a strong affinity of CUR towards Bcl2 (dock score -10.94 Kcal/mol). The synthesized NCUR were of even shape, devoid of cracks and holes with mean size of ~80 nm having -7.53 mV zeta potential. Dose 1 efficiently improved serum glucose levels, tissue-specific expression of Bcl2 and reduced glomerular space and glomerular sclerosis in comparison to hyperglycaemic group. Conclusion: This study essentially validates the potential of NCUR to inhibit DN by reducing blood glucose level and mitigating glomerular apoptosis by selectively promoting Bcl2 protein expression in kidney tissue.