DOI QR코드

DOI QR Code

Miscibility of Melt-mixed PLLA/PMMA Blends for Optical Film Application

광학 필름 적용을 위한 용융혼합된 PLLA/PMMA 블렌드의 상용성 연구

  • Park, Eun Ju (School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, In Seok (Department of Polymer Engineering, Chonnam National University) ;
  • Park, Sang Seok (School of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Ho Sang (R&D Center, LG MMA) ;
  • Lee, Moo Sung (School of Applied Chemical Engineering, Chonnam National University)
  • 박은주 (전남대학교 응용화학공학부) ;
  • 김인석 (전남대학교 고분자공학과) ;
  • 박상석 (전남대학교 응용화학공학부) ;
  • 이호상 (LG MMA(주)) ;
  • 이무성 (전남대학교 응용화학공학부)
  • Received : 2013.07.09
  • Accepted : 2013.08.19
  • Published : 2013.11.25

Abstract

The miscibility between poly(L-lactide) (PLLA) and poly(methyl methacrylate) (PMMA) was investigated using thermal analyses for the purpose of developing birefringence-free material at oriented state. The effect of methyl acrylate (MA) units as comonomer of PMMA on the miscibility was also studied. All the blends prepared in this study show composition-dependent single $T_g$'s between those of blend components and high transparency over the visible region, indicating the miscibility at molecular level and no discernible effect of MA units on it. No phase separation was observed at elevated temperature of $280^{\circ}C$, higher than the degradation of PLLA and PMMA. The interaction energy density in PLLA/PMMA blends with 17 mol% of MA was measured to be $-0.74J/cm^3$ from the equilibrium melting temperature depression based on the Hoffman-Weeks method. The blends show zero-${\Delta}$n behavior at a specific mixing ratio and the drawing ratio of 3 due to compensation of intrinsic orientation birefringence. Birefringence dispersion of PLLA/PMMA5 blends was also measured to examine the possibility for quarter-wave plates or polarizer protective films.

배향된 상태에서 복굴절이 없는 zero-${\Delta}$n 재료를 개발할 목적으로 용융혼합된 폴리락타이드(PLLA, (+)복굴절)/폴리(메틸 메타크릴레이트)(PMMA, (-)복굴절) 블렌드의 상용성과 PMMA의 공단량체인 메틸 아크릴레이트(MA)가 PLLA와의 상용성에 미치는 영향을 살펴보았다. MA 함량에 상관없이 모든 블렌드에서 조성에 따라 변하는 단일 $T_g$와 90% 이상의 투명도가 관찰되었으며, 이로부터 용융혼합된 PLLA/PMMA 블렌드는 분자수준에서 상용성을 보임을 확인하였다. 이들 블렌드는 $280^{\circ}C$의 온도에서도 안정한 단일상을 유지하였다. MA가 17 mol%첨가된 PMMA17과 PLLA의 블렌드의 경우 Hoffman-Weeks 방법을 적용하여 평형융점으로부터 구한 상호작용 에너지 밀도(B)는 $-0.74J/cm^3$이었다. PLLA/PMMA 블렌드는 배향되었을 때 조성고분자들의 고유 배향복굴절이 상쇄되어 특정 혼합비에서 "0" 가까운 복굴절 특성을 나타내었다. PLLA/PMMA5 블렌드의 경우 혼합비에 따른 복굴절 분산을 측정한 결과 zero-${\Delta}$n 특성을 보이는 혼합비에서 역분산이 나타나며, 파장의존성이 없는 복굴절 특성을 보이는 조성이 존재함을 확인하였다.

Keywords

References

  1. S. Iwasaki, Z. Satoh, H. Shafiee, A. Tagaya, and Y. Koike, Polymer, 53, 3287 (2012). https://doi.org/10.1016/j.polymer.2012.05.025
  2. B. R. Hahn and J. H. Wendorff, Polymer, 26, 1619 (1985). https://doi.org/10.1016/0032-3861(85)90273-3
  3. H. Saito and T. Inoue, J. Polym. Sci. Part B: Polym. Phys., 25, 1629 (1987). https://doi.org/10.1002/polb.1987.090250806
  4. A. Tagaya, S. Iwata, E. Kawanami, H. Tsukahara, and Y. Koike, Appl. Opt., 40, 3677 (2001). https://doi.org/10.1364/AO.40.003677
  5. R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004). https://doi.org/10.1002/mabi.200400043
  6. C. M. B. Goncalves, J. A. P. Coutinho, and I. M. Marrucho, "Optical Properties", in Poly(Lactic acid): Synthesis, Structures, Properties, Processing, and Applications, R. Auras, L.-T. Lim, S. E. M. Selke, and H.Tsuji, Editors, Wiley, Hoboken, Chap 8 (2010).
  7. S. Detyothin, A. Kathuria, W. Jaruwattanayon, S. E. M. Selke, and R. Auras, "Poly(lactic acid) blends", in Poly(Lactic acid): Synthesis, Structures, Properties, Processing, and Applications, R. Auras, L.-T. Lim, S. E. M. Selke, and H. Tsuji, Editors, Wiley, Hoboken, Chap 16 (2010).
  8. J. L. Eguiburu, J. J. Iruin, M. J. Fernandez-Berridi, and J. Roman, Polymer, 39, 6891 (1998). https://doi.org/10.1016/S0032-3861(98)00182-7
  9. G. Zhang, J. Zhang, S. Wang, and D. Shen, J. Polym. Sci. Part B: Polym. Phys., 41, 23 (2003). https://doi.org/10.1002/polb.10353
  10. S. H. Li and E. M. Woo, Polym. Int., 57, 1242 (2008). https://doi.org/10.1002/pi.2469
  11. D. R. Paul and J. W. Barlow, Polymer, 25, 487 (1984). https://doi.org/10.1016/0032-3861(84)90207-6
  12. S. Zhu and D. R. Paul, Macromolecules, 35, 8227 (2002). https://doi.org/10.1021/ma020770q
  13. J. M. G. Cowie, V. Arrighi, and E. A. McGonigle, Macromol. Chem. Phys., 206, 767 (2005). https://doi.org/10.1002/macp.200400485
  14. M. Bosma, G. Ten Brinke, and T. S. Ellis, Macromolecules, 21, 1465 (1988). https://doi.org/10.1021/ma00183a041
  15. J. Mijovi ´c, T. Ho, and T. K. Kwei, Polym. Eng. Sci., 29, 1604 (1989). https://doi.org/10.1002/pen.760292210
  16. I. M. Kalogeras and W. Brostow, J. Polym. Sci. Part B: Polym. Phys., 47, 80 (2009).
  17. S. Zheng and Y. Mi, Polymer, 44, 1067 (2003). https://doi.org/10.1016/S0032-3861(02)00878-9
  18. W. H. Jo and S. C. Lee, Macromolecules, 23, 2261 (1990). https://doi.org/10.1021/ma00210a022
  19. T. Nishi and T. T. Wang, Macromolecules, 8, 909 (1975). https://doi.org/10.1021/ma60048a040
  20. J. E. Harris, D. R. Paul, and J. W. Barlow, Polym. Eng. Sci., 23, 676 (1983). https://doi.org/10.1002/pen.760231207
  21. H. Marand, J. Xu, and S. Srinivas, Macromolecules, 31, 8219 (1998). https://doi.org/10.1021/ma980747y
  22. J. Huang, M. S. Lisowski, J. Runt, E. S. Hall, R. T. Kean, N. Buehler, and J. S. Lin, Macromolecules, 31, 2593 (1998). https://doi.org/10.1021/ma9714629
  23. L. M. Robeson, Polymer Blends: A Comprehensive Review, Hanser, Munich, 2007.
  24. A. Uchiyama and T. Yatabe, Jpn. J. Appl. Phys., 42, 5665 (2003). https://doi.org/10.1143/JJAP.42.5665
  25. K. Kuboyama, T. Kuroda, and T. Ougizawa, Macromol. Symp., 249, 641 (2007).

Cited by

  1. Study on Phase Separation of Carbon Dioxide-reducible Polymer Blends vol.24, pp.1, 2015, https://doi.org/10.5322/JESI.2015.24.1.9
  2. A bio-inspired optical system with a polymer membrane and integrated structure vol.11, pp.6, 2013, https://doi.org/10.1088/1748-3190/11/6/066008
  3. Design of porous and fish scale-like nanofibers for the reinforcement of transparent composites vol.212, pp.None, 2013, https://doi.org/10.1016/j.matdes.2021.110284