• Title/Summary/Keyword: lactic acid bacteria count

Search Result 207, Processing Time 0.023 seconds

Effects of Heat Treatment of Soy Milk on Acid Production by Lactic Acid Bacteria and Quality of Soy Yogurt (두유(豆乳)의 가열처리가 젖산균의 산생성(散生成)과 대두요구르트의 품질에 미치는 영향)

  • Ko, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.317-325
    • /
    • 1988
  • The effects of various heat treatments of soy milk prepared from soy protein concentrate on growth and acid production by five species of lactic acid bacteria were investigated. Sensory property and sedimentation characteristics of soy yogurt prepared from heat-treated soy milk were also evaluated. Heat treatment of soy milk stimulated acid production by all cultures. Acid production was generally proportional to degree of heat treatment and acid production by all cultures except Streptococcus lactis was maximum in soy milk heated at $121^{\circ}C-1min$. However, viable cell count was not changed markedly by heat treatment of soy milk. Sensory property of soy yogurt beverage (SYB) prepared from soy milk heated at $95^{\circ}C-30min$ was better than that of unheated sample while sensory property of SYB prepared from soy milk heated at $121^{\circ}C-15min$ was inferior to that of unheated sample. Heat treatment of soy milk generally retarded sedimentation of curd in SYB.

  • PDF

Quality characteristics of kimchi with Artemisia annua extracts (개똥쑥 추출물을 첨가한 김치의 품질특성)

  • Lee, Sang-Soo;Kwon, Dong-Jin
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.666-673
    • /
    • 2015
  • The quality characteristics of kimchi with Artemisia annua extracts (1~2%; extracted with water or 70% ethanol), including the pH, acidity, reducing sugar content, total viable cell and lactic acid bacteria cell count, and sensory parameters, were investigated at 10 and $15^{\circ}C$ for 20 days during aging. The pH, acidity, reducing sugar content, and lactic acid bacteria count of kimchi with Artemisia annua extract rapidly increased upto the 4~6th day, increasing slowly thereafter. The quality characteristics did not vary between kimchi with and without the extract. The optimal aging time for kimchi with the extract was 10 days at $10^{\circ}C$. The results of the sensory evaluation showed that kimchi with 1% Artemisia annua extract was superior to kimchi with 2% Artemisia annua extract; in particular, the color and taste of the latter were found to be black and bitter, respectively.

Performance of Male Crossbred Calves as Influenced by Substitution of Grain by Wheat Bran and the Addition of Lactic Acid Bacteria to Diet

  • Khuntia, A.;Chaudhary, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.188-194
    • /
    • 2002
  • To study the effect of wheat bran and lactic acid producing bacteria (LAB) on the performance of calves, 20 crossbred male cattle calves (day old), distributed into two groups were fed on calf starters containing 50 or 0% maize grain, along with green berseem ad libitum and milk as per body weight. Each group was further divided into two sub groups and one subgroup of each group was supplemented with mixed culture of LAB (Lactobacillus acidophilus L. casei, L. Jugarti). Milk feeding was discontinued after 8 weeks of age. The addition of culture increased (p<0.05) DM intake in calves receiving grainless diet from eighth week to the thirteenth one. There was about 21% higher body weight gain and 14% lower feed : gain ratio in culture supplemented calves. DM digestibility was significantly lower (p<0.05) in calves getting grain without culture. The crude protein NDF and ADF digestibility was higher (p<0.05) in grainless than the grain fed group. No major change on rumen fermentation pattern among different treatments was found. The concentration of total volatile fatty acids (TVFA) and protozoa count was higher (p<0.05) in grain fed group. However, lactic acid concentration was higher and rumen pH was lower due to culture feeding. The incidence as well as severity of diarrhoea was reduced in culture supplemented group. The results indicate that crossbred calves can be reared successfully on grainless diet and berseen fodder. The performance of calves was also improved by LAB supplementation.

Comparative Evaluation of Culture Media for Quantification of Lactic Acid Bacteria in Various Dairy Products

  • Eiseul Kim;Shin-Young Lee;Yoon-Soo Gwak;Hyun-Jae Kim;Ik-Seon Kim;Hyo-Sun Kwak;Hae-Yeong Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.10-17
    • /
    • 2023
  • Dairy products are extensively used as carriers of probiotic strains that have potential health benefits. Assessment of the viability of probiotic strains during manufacturing is important to ensure that products meet recommended levels. Hence, the method for accurately quantifying lactic acid bacteria (LAB) in probiotic or dairy products is required. The present study aims to examine the performance of de-Man Rogosa Sharpe (MRS), plate count agar with bromocresol purple (PCA with BCP), and glucose blood liver (BL) agars recommended in the Korea Food Code guidelines for counting LAB. Analysis of the performance of culture media containing 19 lactic acid bacterial species commonly encountered in probiotic and dairy products showed no statistically significant difference between 18 reference strains and three culture media (p > 0.01). Furthermore, the suitability of three culture media was verified for the quantitative assessment of LAB in 25 probiotic and dairy products. The number of LAB in three culture media was determined to be more than 107 colony-forming unit (CFU)/ml for fermented milk products and 108 CFU/ml for condensed fermented milk and probiotic products, indicating that they all satisfied the Korea Food Code guidelines. Moreover, there was no statistically significant difference in the amount of LAB counted in all three culture media, suggesting that they can be used to isolate or enumerate LAB in commercial products. Finally, three culture media will be useful for isolating and enumerating LAB from fermented foods as well as gut microflora.

Effect of Green Tea Powder on Growth of Lactic Culture (가루녹차가 요구르트 균주의 증식에 미치는 영향)

  • Jung Da-Wa;Nam Eun-Sook;Park Shin-In
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.4
    • /
    • pp.325-333
    • /
    • 2005
  • This experiment was carried out to investigate the effect of green tea powder on the growth and acid production of lactic culture in reconstituted skim milk. The supplementation level of green tea powder to reconstituted skim milk was $0.5\%,\;1.0\%,\;1.5\%,\;2.0\%\;and\;2.5\%$. Reconstituted skim milk containing green tea powder was fermented by single or mixed culture of Streptococcus thermophilus, Lactobacillus acidophilus and Lactobacillus casei. Supplementation of green tea powder did not significantly stimulate growth and acid production of Streptococcus thermophilus and Lactobacillus casei. But the growth and acid production of Lactobacillus acidophilus were slightly enhanced by the addition of green tea powder. When green tea powder was added to reconstituted skim milk at the level of $0.5\%\;or\;1.0\%$, all mixed cultures oi lactic acid bacteria showed high number of viable cell count and the acid production than 3 kinds of single cultures. Therefore, it was suggested to manufacture the yoghurt with the addition of $0.5\~1.0\%$ green tea powder and the inoculation of mixed cultures of lactic acid bacteria for on the stimulation of growth of the lactic culture.

Application of Baechu-Kimchi Powder and GABA-Producing Lactic Acid Bacteria for the Production of Functional Fermented Sausages

  • Yu, Hyun-Hee;Yoon, Gun Hee;Choi, Ji Hun;Kang, Ki Moon;Hwang, Han-Joon
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.804-812
    • /
    • 2017
  • This study was carried out to determine the physicochemical, microbiological, and quality characteristics of a new type of fermented sausage manufactured by incorporating Baechu-kimchi powder and gamma-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB). The LAB count was at the maximum level by day nine of ripening in inoculated sausages, accompanied by a rapid decrease in the pH. The addition of kimchi powder decreased the lightness ($L^*$) and increased the redness ($a^*$) and, yellowness ($b^*$) values, while also significantly increasing the hardness and chewiness of the sausage (p<0.05). Moreover, although the thiobarbituric acid reactive substances values increased in all samples during the study period, this increase was lower in the kimchi-treated samples, indicating a reduction in lipid oxidation. Overall, our results show that the addition of Baechu-kimchi powder to sausages reduced the off-flavor properties and improved the taste profile of the fermented sausage in sensory evaluations. The GABA content of all fermented sausages increased from 17.42-25.14 mg/kg on the third day of fermentation to 60.95-61.47 mg/kg on the thirtieth day. These results demonstrate that Baechu-kimchi powder and GABA-producing LAB could be functional materials in fermented sausage to improve quality characteristics.

Effect of Addition Level of Green Tea Extract on the Lactic Acid Bacteria, Oxidative Stability, and Aroma in Kimchi-fermented Sausage (녹차 추출물의 첨가 수준이 김치 발효 소시지의 젖산균, 산화안정성 및 향기에 미치는 영향)

  • Kang, Sun-Moon;Kim, Tae-Sil;Song, Young-Han;Kwon, Il-Kyoung;Cho, Soo-Hyun;Park, Beom-Young;Lee, Sung-Ki
    • Food Science of Animal Resources
    • /
    • v.32 no.4
    • /
    • pp.467-475
    • /
    • 2012
  • This study was carried out to investigate the effect of the addition level (0 ppm, 400 ppm, 800 ppm, and 1,200 ppm) of green tea extract on the lactic acid bacteria, oxidative stability, and aroma in kimchi-fermented sausage. The sample sausages were fermented at $24^{\circ}C/RH$ 89% until attained to a pH value of 4.9 (for 17 h), and then dried at $10^{\circ}C/RH$ 75-80% for 6 d. The lactic acid bacteria count and pH value were 7.5-7.7 Log CFU/g sausage and 4.30-4.33, respectively, at 6 d of ripening. The results of those did not show significant differences among all treatments. The formation of TBARS (2-thiobarbituric acid reactive substances) was significantly lowered by increasing the addition level of green tea extract. During ripening periods, the CIE $L^*$ and $a^*$ values decreased; however, the $b^*$ value increased due to the addition of green tea extract. Utilizing an electric nose, the aroma pattern was clearly discriminated between green tea extract treatments and the control. Therefore, in kimchi-fermented sausages, the high addition level of green tea extract improved the lipid oxidation stability. In addition, regardless of the addition level, green tea extract changed the aroma while reducing the color stability. Moreover, it did not have any effect on the growth of lactic acid bacteria.

Evaluation of Functional Properties of the Tissue Cultured Wild Ginseng Fermented by Lactobacillus sp. (Lactobacillus sp.균주를 이용한 산삼 배양근 발효물의 기능성 평가)

  • Shin, Eun Ji;Cho, Chang-Won;Kim, Young-Eon;Han, Daeseok;Hong, Hee-Do;Rhee, Young Kyoung
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.6
    • /
    • pp.743-750
    • /
    • 2012
  • A tissue cultured wild ginseng (TCWG) suspension was inoculated with lactic acid bacteria and fermented to improve the functionality of TCWG. The utilization of TCWG was increased directly using the freeze-dried powder. The optimal ratio of TCWG powder and water for fermentation was 1:19 (5%), which was selected by measuring the fluidity and viable cell count according to concentration. The effects on ADH activation and immune cell activation by each ferments with 10 kinds of Lactobacillus sp. strains were examined. The ferments with the Lactobacillus casei KFRI 692 strain showed 5.4 times higher ADH activity and 1.3 times higher ALDH activity than the non-fermented TCWG powder (control). The level of NO production and cytotoxicity was also measured by Raw 264.7 cells. The ferment with the Lac. casei KFRI 692 strain showed the highest level of NO production and lower cytotoxicity than the others. Therefore, the Lac. casei KFRI 692 strain was selected as a strain for fermentation of a TCWG suspension to maximize its functionality. To identify the optimal fermentation time of the selected Lac. casei KFRI 692 strain on the 5% TCWG suspension, the viable cell count of lactic acid bacterial and the changes in pH were observed for 72 hours. 24-hrs was found to be the optimal fermentation time. In this way, fermented TCWG with lactic acid bacteria showed higher ADH activation efficacy and immune cell activation than non-fermented TCWG.

Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk

  • Ng, Ker-Sin;Chang, Yu-Chun;Chen, Yen-Po;Lo, Ya-Hsuan;Wang, Sheng-Yao;Chen, Ming-Ju
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.281-289
    • /
    • 2022
  • Objective: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. Methods: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4℃. Results: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. Conclusion: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.

Physicochemical Properties of Fermented Milk Supplemented with Helianthus tuberosus Powder (돼지감자 분말 첨가 발효유의 이화학적 특성)

  • Park, Byung Bae;Renchinkhand, Gereltuya;Nam, Myoung Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.196-205
    • /
    • 2019
  • Helianthus tuberosus is a perennial plant in the genus, Asteraceae. Pork potato has various pharmacological functions such as improving constipation, preventing bowel disease, inhibiting colon cancer, reducing serum cholesterol, lowering blood lipids, and enhancing blood sugar. This study investigated the physicochemical properties of fermented milk by adding Helianthus tuberosus powder. During the fermentation process, the pH of the fermented milk with added Helianthus tuberosus was higher after 16 hours of fermentation. At 48 hours of fermentation, the pH decreased to 3.70, 3.65, 3.63, and 3.59 with 0% (the control group), 1%, 3%, and 5% Helianthus tuberosus added, respectively. In the last 48 hours of fermentation, the acidity increased to 2.35%, 2.57%, and 3.17% with 0% (the control group), 1%, 3%, and 5% Helianthus tuberosus added, respectively. The number of lactic acid bacteria increased as the quantity of Helianthus tuberosus added increased. The highest number of lactic acid bacteria was 9.96 log CFU/g after 16 hours of fermentation with a 5% addition of Helianthus tuberosus . After 48 hours of fermentation, the amount of lactic acid bacteria decreased to 7.84 log CFU/g and 7.88 log CFU/g in the control group and the 1% added Helianthus tuberosus group, respectively. The addition of 3% and 5% Helianthus tuberosus increased the lactic acid bacteria count to 9.48 log CFU/ g and 9.81 log CFU/g, respectively. As the fermentation time increased, oxalic acid and tartaric acid decreased but lactic acid increased. Lactose degraded galactose and glucose over time. After 48 hours of fermentation, the viscosity in the control, 1%, 3%, 5% added Helianthus tuberosus groups increased to 1,006 cP, 1,026 cP, 1,040 cP, and 1,106 cP, respectively. The antioxidant effect was higher in the 5% added Helianthus tuberosus group (84.14%) than in the control group (80.39%) at 48 hours of fermentation. The concentration of polyphenol was 1.6 mg/g and antimicrobial activity was strong against E. coli and Staphylococcus aureus.