Browse > Article
http://dx.doi.org/10.5851/kosfa.2017.37.6.804

Application of Baechu-Kimchi Powder and GABA-Producing Lactic Acid Bacteria for the Production of Functional Fermented Sausages  

Yu, Hyun-Hee (Department of Food and Biotechnology, Korea University)
Yoon, Gun Hee (Department of Food and Biotechnology, Korea University)
Choi, Ji Hun (Foods R&D Center, CJ CHEILJEDANG Corp)
Kang, Ki Moon (Foods R&D Center, CJ CHEILJEDANG Corp)
Hwang, Han-Joon (Department of Food and Biotechnology, Korea University)
Publication Information
Food Science of Animal Resources / v.37, no.6, 2017 , pp. 804-812 More about this Journal
Abstract
This study was carried out to determine the physicochemical, microbiological, and quality characteristics of a new type of fermented sausage manufactured by incorporating Baechu-kimchi powder and gamma-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB). The LAB count was at the maximum level by day nine of ripening in inoculated sausages, accompanied by a rapid decrease in the pH. The addition of kimchi powder decreased the lightness ($L^*$) and increased the redness ($a^*$) and, yellowness ($b^*$) values, while also significantly increasing the hardness and chewiness of the sausage (p<0.05). Moreover, although the thiobarbituric acid reactive substances values increased in all samples during the study period, this increase was lower in the kimchi-treated samples, indicating a reduction in lipid oxidation. Overall, our results show that the addition of Baechu-kimchi powder to sausages reduced the off-flavor properties and improved the taste profile of the fermented sausage in sensory evaluations. The GABA content of all fermented sausages increased from 17.42-25.14 mg/kg on the third day of fermentation to 60.95-61.47 mg/kg on the thirtieth day. These results demonstrate that Baechu-kimchi powder and GABA-producing LAB could be functional materials in fermented sausage to improve quality characteristics.
Keywords
gamma-aminobutyric acid (GABA); fermented sausage; Baechu-kimchi powder; lactic acid bacteria (LAB);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Garcia, M. L., Caceres, E., and Selgas, M. D. (2007) Utilisation of fruit fibres in conventional and reduced-fat cooked-meat sausages. J. Sci. Food. Agric. 87, 624-631.   DOI
2 Han, Y. S., Kim, S. I., Jung, H. O., Chun, H. J., and Paik, J. E. (2001) Effect of kimchi on the microbiological properties of fermented sausages during ripening period. Korean J. Food Cookery Sci. 17, 224-228.
3 Higuchi, T., Hayashi, H., and Abe, K. (1997) Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J. Bacteriol. 179, 3362-3364.   DOI
4 Hugas, M. and Monfort, J. M. (1997) Bacterial starter cultures for meat fermentation. Food Chem. 59, 547-554.   DOI
5 Hwang, J. W. and Song, Y. O. (2000) The effects of solvent fractions of kimchi on plasma lipid concentration of rabit fed high cholesterol diet. J. Korean Soc. Food Sci. Nutr. 29, 204-209.
6 Inoue, K., Shirai, T., Ochiai, H., and Kasao, M. (2003) Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 57, 490-495.   DOI
7 Larrouture, C., Ardaillon, V., Pépin, M., and Montel, M. C. (2000) Ability of meat starter cultures to catabolize leucine and evaluation of the degradation products by using an HPLC method. Food Microbiol. 17, 563-570.   DOI
8 Lee, J. Y. and Kunz, B. (2005) The antioxidant properties of baechu-kimchi and freeze-dried kimchi-powder in fermented sausages. Meat Sci. 69, 741-747.   DOI
9 Lee, M. A., Han, D. J., Jeong, J. Y., Choi, J. H., Choi, Y. S., Kim, H. Y., and Kim, C. J. (2008) Effect of kimchi powder level and drying methods on quality characteristics of breakfast sausage. Meat Sci. 80, 708-714.   DOI
10 Lee, M. E., Jang, J. Y., Lee, J. H., Park, H. W., Choi, H. J., and Kim, T. W. (2015) Starter cultures for kimchi fermentation. J. Microbiol. Biotechnol. 25, 559-568.   DOI
11 Lee, Y. O. and Cheigh, H. S. (1995) Antioxidative effect of kimchi on the lipid oxidation of cooked meat. J. Korean Soc. Food Sci. Nutr. 24, 1005-1009.
12 Benito, M. J., Martin, A., Aranda, E., Perez-Nevado, F., Ruiz-Moyano, S., and Cordoba, M. G. (2007) Characterization and selection of autochthonous lactic acid bacteria isolated from traditional iberian dry-fermented salchichón and chorizo sausages. J. Food Sci. 72. 193.   DOI
13 Leheska, J. M., Boyce, J., Brooks, J. C., Hoover, L. C., Thomp- son, L. D., and Miller, M. F. (2006) Sensory attributes and phenolic content of precooked pork breakfast sausage with fruit purees. J. Food Sci. 71, 249-252.   DOI
14 Luecke, F. K. (1997). Fermented sausages. In: Microbiology of fermented foods. B. J. B. Wood (ed), Blackie Academic & Professional, London, pp. 441-483.
15 Aleson-Carbonell, L., Fernandez-Lopez, J., Sayas-Barbera, E., Sendra, E., and Perez Alvarez, J. A. (2003) Utilization of Lemon Albedo in Dry-cured Sausages. J. Food Sci. 68, 1826-1830.   DOI
16 Barla, F., Koyanagi, T., Tokuda, N., Matsui, H., Katayama, T., Kumagai, H., and Enomoto, T. (2016) The ${\gamma}$-aminobutyric acid-producing ability under low pH conditions of lactic acid bacteria isolated from traditional fermented foods of Ishikawa Prefecture, Japan, with a strong ability to produce ACE-inhibitory peptides. Biotechnology Reports 10, 105-110.   DOI
17 Ben-Giglrey B., De Sousa, J. M., and Villa T. G. (1998) Changes in biogenic amines and microbiological analysis in albacore(Thunnus alalunga) muscle during frozen storage. J. Food Prot. 61, 608-615.   DOI
18 Bover-Cid, S. and Holzapfel, W. H. (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 53, 33-41.   DOI
19 Brink, B., Damink, C., Joosten, H. M. L. J., and In t Veld, J. H. (1990) Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11, 73-84.   DOI
20 Luecke, F. K. and Hechelmann, H. (1986) Starterkulturen für Rohwurst und Rohschinken und Rohschinken. Fleischwirtschaft 67, 307-314.
21 Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., and Takahashi, T. (2000) Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. J. Jap. Soc. Food Sci. 47, 596-603.   DOI
22 Park, Y. S. and Lee, J. Y. (2012) The effect of kimchi on the microbiological stability of fermented sausage. Meat Sci. 92, 721-727.   DOI
23 Rice, S. L. and Koehler, P. E. (1976). Tyrosine and histidine decarboxylase activities of Pediococcus cerevisiae and Lactobacillus species and the production of tyramine in fermented sausages. J. Milk Food Technol. 39, 166-169.   DOI
24 Woo, S. M. and Jeong, Y. J. (2006) Effect of germinated brown rice concentrate on free amino acid levels and antioxidant and nitrite scavenging activity in kimchi. Food Sci. Biotechnol. 15, 351-356.
25 Buckenhuskes, H. J. (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FMES Microbiol. Rev. 12, 253-271.   DOI
26 Sanchez-Zapata, E., Zunino, V., Perez-Alvarez, J. A., and Fernandez-Lopez, J. (2013) Effect of tiger nut fibre addition on the quality and safety of a dry-cured pork sausage ("Chorizo") during the dry-curing process. Meat Sci. 95, 562-568.   DOI
27 Somkuti, G. A., Renye, J. A., and Steinberg, D. H. (2012) Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110. J. Ind. Microbiol. Biotechnol. 39, 957-963.   DOI
28 Steenblock, R. L., Sebranek, J. G., Olson, D. G., and Love, J. A. (2001) The effects of oat fiber on the properties of light bologna and fat-free frankfurters. J. Food Sci. 66, 1409-1415.   DOI
29 Witte, V. C., Krause, G. F., and Bailey, M. E. (1970) A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 35, 582-585.   DOI
30 Xiang, C., Ruiz-Carrascal, J., Petersen, M. A., and Karlsson, A. H. (2017) Cheese powder as an ingredient in emulsion sausages: Effect on sensory properties and volatile compounds. Meat Sci. 130, 1-6.   DOI
31 Yang, S. Y., Lu, F. X., Lu, Z. X., Bie, X. M., Jiao, Y., Sun, L. J., and Yu, B. (2008) Production of $\gamma$-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino acids. 34, 473-478.   DOI
32 Fernandez-Lopez, J., Perez-Alvarez, J. A., and Fernandez-Lopez, J. A. (1997) Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem. 59, 345-353.   DOI
33 Yu, H. H., Choi, J. H., Kang, K. M., and Hwang, H. J. (2017) Potential of a lactic acid bacterial starter culture with gammaaminobutyric acid (GABA) activity for production of fermented sausage. Food Sci. Biotechnol. 26, 1-9.   DOI
34 Yu, J. J. and Oh, S. H. (2011) $\gamma$-aminobutyric acid production and glutamate decarboxylase activity of Lactobacillus sakei OPK2-59 isolated from kimchi. Korean J. Microbiol. 47, 316-322.
35 Cheigh, H. S., Park, K. Y., and Lee, C. Y. (1994) Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. 34, 175-203.   DOI
36 Cho, S. Y., Park, M. J., Kim, K. M., Ryu, J. H., and Park, H. J. (2011) Production of high ${\gamma}$-aminobutyric acid (GABA) sour kimchi using lactic acid bacteria isolated from mukeunjee kimchi. Food Sci. Biotechnol. 20, 403-408.   DOI
37 Dierick, N., Vandekerckhove, P., and Demeyer, O. (1974) Changes in nonprotein nitgen compounds during dry sausage ripening. J. Food Sci. 39, 301-304.   DOI
38 Fernandez-Lopez, J., Perez-Alvarez, J. A., Sayas-Barbera, E., and Lopez-Santovena, F. (2002) Reflectance spectra evaluate the effect of spices. J. Food Sci. 67, 2410-2414.   DOI
39 Fetlinski, A., Knaut, T., and Kornacki, K. (1979) Einsatz von Milchsaurebakterien als Starterkulturen zur Haltbarkeitsverlangerung von Hackfleisch. Fleischwirtschaft 59, 1729-1730.
40 Flores, J. and Bermell, S. (1996) Dry-cured sausages: Factors influencing souring and their consequences. Fleischwirtschaft 76, 163-165.