• Title/Summary/Keyword: lactic acid bacteria (LAB)

Search Result 519, Processing Time 0.036 seconds

Characterization of Paraplantaricin C7, a Novel Bacteriocin Produced by Lactobacillus paraplantarum C7 Isolated from Kimchi

  • Lee, Kwang-Hee;Park, Jae-Yong;Jeong, Seon-Ju;Kwon, Gun-Hee;Lee, Hyong-Joo;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.287-296
    • /
    • 2007
  • A Lactobacillus paraplantarum strain producing a bacteriocin was isolated from kimchi using the spot-on-the lawn method and named L. paraplantarum C7 [15]. The bacteriocin, paraplantaricin C7, was found to inhibit certain Lactobacillus strains, including L. plantarum, L. pentosus, and L. delbrueckii subsp. lactis. It also inhibited Enterococcus faecalis, yet did not inhibit most of the other LAB (lactic acid bacteria) tested. The maximum level of paraplantaricin C7 activity was observed under the culture conditions of $25^{\circ}C$ and a constant pH of 4.5. Paraplantaricin C7 retained 90% of its activity after 10 min of treatment at $100^{\circ}C$ and remained stable within a pH range of 2-8. Based on a culture supernatant, paraplantaricin C7 was purified by DEAE-Sephacel column chromatography and $C_{18}$ reverse-phase HPLC. SDS-PAGE and activity staining were then conducted using the purified paraplantaricin C7, and its molecular mass determined to be about 3,800 Da. The 28 N-terminal amino acids from the purified paraplantaricin C7 were determined, and the structural gene encoding paraplantaricin C7, ppnC7, was cloned by PCR using degenerate primers based on the N-terminal amino acid sequence. The nucleotide sequences for ppnC7 and other neighboring orfs exhibited a limited homology to the previously reported plantaricin operon genes. Paraplantaricin C7 is a novel type II bacteriocin containing a double glycine leader sequence.

Anti-obesity and Anti-diabetic Effects of the Fermented Ethanol Extracts from White Jelly Fungus (Tremella fuciformis Berk) with Lactobacillus rhamnosus BHN-LAB 76 (Lactobacillus rhamnosus BHN-LAB 76로 발효한 흰목이버섯 (Tremella fuciformis Berk) 추출물의 항비만 및 항당뇨 효과)

  • Yoon, Yeo-Cho;Kim, Byung-Hyuk;Kim, Jung-Gyu;Lee, Jun-Hyeong;Park, YeEun;Park, Hye-Suk;Hwang, Hak-Soo;Kwon, Gi-Seok;Lee, Jung-Bok
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.323-331
    • /
    • 2019
  • White jelly fungus (Tremella fuciformis Berk; TF) has been used as a traditional medicine in Asia; it is known to prevent hypertension, aging, cancer, and arteriosclerosis. This study aimed to investigate the anti-diabetic effects of fermented Tremella fuciformis Berk (FTF) ethanol extracts fermented with L. rhamnosus BHN-LAB 76. We show that FTF increases the ${\alpha}$-glucosidase inhibitory activity and suppress the adipogenesis of 3T3-L1 adipocytes. These inhibitory effects of FTF are accompanied by the regulation of the phosphorylation of AMPK, JNK, and Akt. These data demonstrate that FTF not only inhibits adipogenesis by affecting the adipogenic signaling, but also increases the anti-diabetic effects by regulating the insulin signaling pathway. Therefore, we suggest that the FTF can be used for developing functional food and cosmetics materials.

Changes in physiologically active ingredients and anti-inflammatory properties of underutilized wild vegetables by complex fermentation using beneficial microorganisms (유용미생물에 의한 저이용 산채류의 복합발효 중 생리활성 성분 및 항염증 변화)

  • Sang-Hyeob Sim;Ha KyoungChoi;Da Eun Lee;Soo Chang Na;Dae Il Hwang;Hyo Bin Oh;Yi Teak Lim;Tae-Young Kim;Dae-Woon Kim
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.287-297
    • /
    • 2024
  • It was confirmed that complex fermentation (CF) was more efficient than single-strain fermentations in inducing changes in the contents of phenolic compounds of Maclura tricuspidate and Pyrus Montana Nakai. A mixture of Maclura tricuspidata, Pyrus montana Nakai, Platycodon grandiflorum and Codonopsis lanceolata were fermented in CF using Aspergillus shirousamii (koji), yeast, and lactic acid bacteria (LAB) for 24 days, and the pH, °Brix, total acidity, anti-oxidant activity, polyphenol content, nitric oxide (NO), and Western blotting of inducible nitric oxide synthase (iNOS), cyclo-oxygenase-2 (COX-2), and tumor necrosis factor-𝛼 (TNF-𝛼) of the sample were determined. There was no significant change in pH and total acidity. °Brix significantly decreased from day 6 onwards. HPLC confirmed that the concentrations of chlorogenic acid, 4-hydrobenzoic acid, vanillic acid, and caffeic acid significantly increased from day 18 during the fermentation. Additionally, DPPH, ABTS radical scavenging activity, total phenol, and total flavonoid were confirmed to be increased until 18 days. NO was significantly inhibited from day 6, along with significant inhibition of iNOS, COX-2, and TNF-a. In conclusion, this study confirmed that CF of low-use (or underutilized) wild vegetables enhances phenolic compounds. It effectively suppresses NO, iNOS, COX-2, and TNF-𝛼, markers of inflammation-related pathogenesis. Altogether, our results suggest that CF of the above plants has a potential anti-inflammatory effect.

Bacterial Diversity in the Initial Fermentation Stage of Korean and Chinese Kimchi (발효 초기 한국산 및 중국산 김치의 Bacteria 다양성 평가)

  • Lee, Myeong-Jae;Cho, Kyeung-Hee;Han, Eung-Soo;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.207-215
    • /
    • 2010
  • The purpose of this research is to draw the bacterial community difference between Korean and Chinese kimchi for future use in the confirmation of kimchi origin. Initial fermentation stage kimchi samples (above pH 5) were used for the analysis of bacterial diversity. From 26 Korean kimchi samples, 1,017 strains in the 45 genera and from 22 Chinese kimchi samples, 842 strains in the 54 genera were isolated with use of marine medium, nutrient medium, succinate minimal medium (SMM), leuconostocs selective medium (LUSM) agars. In the order of isolated numbers, Bacillus, Weissella, Leuconostoc, Pseudomonas, and Lactobacillus genera and Bacillus, Weissella, Lactobacillus, Pseudomonas, Serratia, and Enterobacter genera were predominated in Korean and Chines kimchi, respectively. Among the isolated lactic acid bacteria, Weissella spp. were isolated most dominantly owing to the biased growth of Weissella spp. on LUSM agar. Species in the genera Leuconostoc and Lactobacillus were the next frequently isolated LAB from Korean and Chinese kimchi, respectively. Weissella confusa was isolated only from Korean kimchi and W. soli and Serratia proteamculans were isolated only from Chinese kimchi. They have a possibility to be used as target bacteria to differentiate Korean kimchi from Chinese kimchi.

Bactericidal Effect of Bacteriocin of Lactobacillus plantarum K11 Isolated from Dongchimi on Escherichia coli O157

  • Lim, Sung-Mee;Im, Dong-Soon
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.151-158
    • /
    • 2007
  • Among 68 strains of lactic acid bacteria (LAB) isolated from Dongchimi, a strain K11 was selected due to its bactericidal activity against Escherichia coli O157 The strain K11 was identified as Lactobacillus plantarum, based on physiological and biochemical characteristics. In the late exponential phase, La. plantarum K11 showed maximum bacteriocin activity (12,800 BU/mL) and maintained until the early stationary phase. The bacteriocin activity was completely inactivated by all the proteolytic enzymes such as pepsin, protease, proteinase K, papain, chymotrypsin, and trypsin, but the activity was not affected by catalase, a-amylase, lysozyme, and lipase, suggesting proteinaceous nature of the bacteriocin. Additionally, this activity was not affected in the pH range from 3.0 to 9.0 and under storage conditions like 30 days at -20,4, or $25^{\circ}C$. Although the bacteriocin activity was absolutely lost after 15 min treatment at 121, it was relatively stable at $70^{\circ}C$ for 60 min or $100^{\circ}C$ for 30 min. The activity was disappeared by treatment with acetone, benzene, ethanol, or methanol, but it was not affected by treatment with chloroform or hexane. The antibacterial activity of the bacteriocin was good against some LAB including Lactobacillus spp., Enterococcus spp., and Streptococcus spp., but not against food-borne pathogens such as Bacillus spp., Listeria spp., and Staphylococcus spp. as well as yeasts and molds. Especially, some intestinal bacteria such as Enterobacter aerogenes and E. coli were significantly affected by the bacteriocin of La, plantarum K11. Furthermore, the addition of 640 BU/mL resulted in the complete clearance of E. coli O157 after 10 hr.

Screening of Lactic Acid Bacteria for Strong Folate Synthesis and Optimization of Fermentation (고엽산 생산능의 유산균 탐색 및 발효 조건 최적화)

  • Du, Kyung Min;Park, Se Jin;Park, Myung Soo;Ji, Geun Eog
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.328-333
    • /
    • 2014
  • Folate is a water-soluble vitamin B that is required for the synthesis of amino acids and nucleic acids. It plays an important role in cell division and cell growth in several living organisms. The purpose of this study was to screen strong folate-synthesizing bacteria and to optimize their culture conditions for folate production. Folate production was quantified by microbiological assays by using folate-dependent strain Lactobacillus rhamnosus KCTC 3237. Folate derivatives were identified by LC-MS/MS. Of the 65 strains of bifidobacteria and lactobacilli tested, L. plantarum Fol 708 demonstrated the greatest ability to produce folate. Its optimal pH for folate production was 5.5 in a pH-controlled, lab-scale fermenter. Coculturing L. plantarum Fol 708 with L. brevis GABA 100 in a milk medium enhanced the level of folate produced in comparison to culturing L. plantarum Fol 708 alone.

Functional Characteristics of Enterococcus faecium SA5 and Its Potential in Conversion of Ginsenoside Rb1 in Ginseng (Enterococcus faecium SA5의 기능적 특성과 인삼 ginsenoside Rb1의 전환)

  • Kim, Eun-Ah;Renchinkhand, Gereltuya;Urgamal, Magsal;Park, Young W.;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.172-179
    • /
    • 2017
  • The fermentation of Panax ginseng can yield many compounds from ginsenosides that have a wide variety of biological functions. Lactic acid bacteria (LAB) strains are capable of converting ginsenosides. The purposes of this study were to: (1) characterize Enterococcus faecium SA5, an isolated LAB from Mongolian mare milk, (2) identify the existence of extracellular ${\beta}$-glucosidase activity in the milk, and (3) ascertain if the ${\beta}$-glucosidase has the capacity of converting ginsenoside in Korean ginseng. The results revealed that E. faecium SA5 was acid-resistant, bile salt-resistant, and has antibiotic activities against 4 pathogenic microorganisms (Salmonella typhimurium KCTC 3216, Listeria monocytogenes KCTC 3710, Bacillus cereus KCTC 1012, Staphylococcus aureus KCTC 1621). In addition, E. faecium SA5 had tolerance against some antibiotics such as colistin, gentamycin and neomycin. It was also found that E. faecium SA5 possessed bile salt hydrolase activity, which could lower blood cholesterol level. When incubated in 10% (w/v) skim milk as a yogurt starter, E. faecium SA5 caused to decrease pH of the medium as well as increase in viable cell counts. Using TLC and HPLC analysis on the samples incubated in MRS broth, our study confirmed that E. faecium SA5 can produce ${\beta}$-glucosidase, which was capable of converting ginsenoside $Rb_1$ into new ginsenosides $Rg_3-s$ and $Rg_3-r$. It was concluded that E. faecium SA5 possessed a potential of probiotic activity, which could be applied to yogurt manufacture as well as ginsenoside conversion in ginseng.

Effects of Forage Cutting and Baler Mixing on Chemical Compositions, Fermentation Indices, and Aerobic Stability of Whole Crop Rice Haylage (조사료의 세절과 베일러 내 교반이 총체벼 헤일리지의 영양소 함량, 발효특성 및 호기적 안전성에 미치는 영향)

  • Myeong Ji Seo;Young Ho Joo;Seong Shin Lee;Ji Yoon Kim;Chang Hyun Baeg;Seung Min Jeong;Ki Choon Choi;Sam Churl Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.50-55
    • /
    • 2023
  • The present study investigated the effects of forage cutting and baler mixing on the chemical compositions, fermentation indices, and aerobic stability of whole crop rice (WCR) haylage. The WCR ("Youngwoo") was harvested at 48.4% dry matter and ensiled into a 300 kg bale silo with forage cutting (whole crop without cutting vs. 5 cm of cutting length). The WCR forages were ensiled without baler mixing process (CON) or with (MIX). The concentrations of dry matter, crude protein, ether extract, crude ash, neutral detergent fiber, and acid detergent fiber of whole crop rice before ensiling were 48.4, 9.70, 2.57, 6.11, 41.2, and 23.5%, respectively. The forage cutting did not affect the chemical compositions, fermentation indices, microbes, and aerobic stability of WCR haylage (p>0.05). The CON haylages tend to be higher in NDF content (p<0.10). The MIX haylages had lower in lactate (p=0.019), and lactate:acetate ratio (p<0.001). The MIX haylages had higher in lactic acid bacteria (LAB) (p=0.010). Therefore, this study concluded that the fermentation quality of WCR haylage improved by baler mixing, but had no effects by forage cutting.

Effects of Selected Inoculants on Chemical Compositions and Fermentation Indices of Rye Silage Harvested at Dough Stage

  • Lee, Seong Shin;Paradhipta, Dimas H.V.;Joo, Young Ho;Lee, Hyuk Jun;Kwak, Youn Sig;Han, Ouk Kyu;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.2
    • /
    • pp.99-105
    • /
    • 2018
  • This study was carried out to estimate the effect of selected inoculants on chemical compositions and fermentation characteristics of rye silage. Rye was harvested at dough stage and divided into 5 treatments, following: No additives (CON); L. plantarum R48-27 (LP27); L. buchneri R4-26 (LB26); Mixture of LP27 and LB26 at 1:1 ratio (MIX); and L. buchneri (LB). The rye forage was ensiled into 10 L bucket silo for 100 days. The contents of NDF and ADF were lowest (P<0.05) in LB26. The pH in LB26, MIX, and LB were lower (P<0.05) than CON and LP27. Lactate content in LB was higher (P<0.05) than the others, while acetate content in LB26 and LB were higher (P<0.05) than that in CON and LP27. Lactate to acetate ratio was highest (P<0.05) in LB, but lowest in LB26. Lactic acid bacteria (LAB) count in LB was higher (P<0.05) than that in CON, while yeast count in CON was lower than in all silages applied inoculants. In conclusion, silages inoculated with LB26 could improve potentially the aerobic stability caused by increases of acetate and propionate concentrations.

Isolation of a Bacteriocin - Producing Lactobacillus sakei Strain from Kimchi (김치에서 박테리오신을 분비하는 Lactobacillus sakei균주의 분리)

  • 김한택;박재용;이강권;김정환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.3
    • /
    • pp.560-565
    • /
    • 2004
  • Bacteriocin producing lactic acid bacteria (LAB) were isolated from Kimchi by using spot-on-the-lawn method. Listeria monocytogenes, Staphylococcus aureus, and Lactobacillus plantarum were used as indicators. One isolate (P3-l) produced a bacteriocin efficiently inhibiting the growth of Listeria monocytogenes. 16S rDNA sequence and sugar utilization test identified that P3-1 was a Lactobacillus sakei strain. Accordingly, the isolate was named as Lactobacillus sakei P3-1. L. sakei P3-1 produced a bacteriocin which efficiently inhibited the growth of Listeria monocytogenes but did not inhibit other Gram positive and negative organisms tested. The bacteriocin was stable against heat, organic solvent, and pH variation and it retained 50% of activity after 10 min heat treatment at 10$0^{\circ}C$. The molecular weight of Sakacin P3-1 was estimated to be 4 kDa by SDS-PAGE.