Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.2.172

Functional Characteristics of Enterococcus faecium SA5 and Its Potential in Conversion of Ginsenoside Rb1 in Ginseng  

Kim, Eun-Ah (Seoul F&B Company)
Renchinkhand, Gereltuya (Division of Animal Resources Science, College of Agriculture and Life Sciences, Chungnam National University)
Urgamal, Magsal (Division of Animal Resources Science, College of Agriculture and Life Sciences, Chungnam National University)
Park, Young W. (Agricultural Research Station, Fort Valley State University)
Nam, Myoung Soo (Division of Animal Resources Science, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
Journal of Life Science / v.27, no.2, 2017 , pp. 172-179 More about this Journal
Abstract
The fermentation of Panax ginseng can yield many compounds from ginsenosides that have a wide variety of biological functions. Lactic acid bacteria (LAB) strains are capable of converting ginsenosides. The purposes of this study were to: (1) characterize Enterococcus faecium SA5, an isolated LAB from Mongolian mare milk, (2) identify the existence of extracellular ${\beta}$-glucosidase activity in the milk, and (3) ascertain if the ${\beta}$-glucosidase has the capacity of converting ginsenoside in Korean ginseng. The results revealed that E. faecium SA5 was acid-resistant, bile salt-resistant, and has antibiotic activities against 4 pathogenic microorganisms (Salmonella typhimurium KCTC 3216, Listeria monocytogenes KCTC 3710, Bacillus cereus KCTC 1012, Staphylococcus aureus KCTC 1621). In addition, E. faecium SA5 had tolerance against some antibiotics such as colistin, gentamycin and neomycin. It was also found that E. faecium SA5 possessed bile salt hydrolase activity, which could lower blood cholesterol level. When incubated in 10% (w/v) skim milk as a yogurt starter, E. faecium SA5 caused to decrease pH of the medium as well as increase in viable cell counts. Using TLC and HPLC analysis on the samples incubated in MRS broth, our study confirmed that E. faecium SA5 can produce ${\beta}$-glucosidase, which was capable of converting ginsenoside $Rb_1$ into new ginsenosides $Rg_3-s$ and $Rg_3-r$. It was concluded that E. faecium SA5 possessed a potential of probiotic activity, which could be applied to yogurt manufacture as well as ginsenoside conversion in ginseng.
Keywords
${\beta}$-glucosidase; conversion; Enterococcus faecium; ginsenoside $Rg_3$; probiotics;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Shinkai, K, Akedo, H., Mukai, M., Imamura, F., Isoai, A., Kobayashi, M. and Kitagawa, I. 1996. Inhibition of in vitro tumor cell invasion by ginsenoside $Rg_3$. Jap. J. Cancer Res. 87, 357-362.   DOI
2 Stavro, P. M., Woo, M., Heim, T. F., Leiter, L. A. and Vuksan, V. 2005. North American ginseng exerts a neutral effect on blood pressure in individuals with hypertension. Hypertension 46, 406-411.   DOI
3 Trinh, H. T., Han, S. J., Kim, S. W., Lee, Y. C. and Kim, D. H. 2007. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J. Microbiol. Biotechnol. 17, 1127-1133.
4 Yan, Q., Zhou, W., Li, X., Feng, M. and Zhou, P. 2008. Purification method improvement and characterization of a novel ginsenosidehydrolyzing beta-glucosidase from Paecilomyces bainier sp. 229. Biosci. Biotech. Biochem. 72, 352-359.   DOI
5 Yi, E. J., Lee, J. M., Yi, T. H., Cho, S. C., Park, Y. J. and Kook, M. C. 2012. Biotransformation of Ginsenoside by Lactobacillus brevis THK-D57 Isolated from Kimchi. Kor. J. Food Nutr. 25, 629-636.   DOI
6 Yun, T. K., Lee, Y. S., Lee, Y. H., Kim, S. I. and Yun, H. Y. 2001. Anticarcinogenic effect of Panax ginseng C. A. Meyer and identification of active compounds. J. Kor. Med. Sci. 16, 6-18.   DOI
7 Zhang, R., Jie, J., Zhou, Y., Cao, Z. and Li., W. 2009. Long-term effects of Panax ginseng on disposition of fexofenadine in rats in vivo. Am. J. Chin. Med. 37, 657-667.   DOI
8 Kim, J. Y. 2013. Probiotic Characteristics of Lactobacillus gasseri 3B2 and Its Use for Red Ginseng Fermentation. Master's Thesis of Bioresources & Technology. Yonsei Uni. Wonju. Korea
9 Kim, H. S., Lee, E. H., Ko, S. R., Cho, K. J., Park, J. H. and Im, D. S. 2004. Effects of ginsenosides $Rg_3\;and\;Rh_2$ on the proliferation of prostate cancer cells. Arch. Pharm. Res. 27, 429-35.   DOI
10 Kim, Y. C., Lee, J. H., Kim, M. S. and Lee, N. G. 1985. Effect of the saponin fraction of Panax ginseng on catecholamines in mouse brain J. Arch. Pharm. Res. 8, 45-49.   DOI
11 Kong, Y. H., Lee, Y. C. and Choi, S. Y. 2009. Neuroprotective and anti-inflammatory effects of phenolic compounds in Panax ginseng C.A. Meyer. J. Ginseng Res. 33, 111-114.   DOI
12 Lee, Y. J., Kim, H. Y., Kang, K. S., Lee, J. G., Yokozawa, T. and Park, J. H. 2008. The chemical and hydroxyl radical scavenging activity changes of ginsenoside $Rb_1$ by heat processing. Bioorg. Med. Chem. Lett. 18, 4515-4520.   DOI
13 Lee, M. J., Kim, E. H. and Rhee, D. K. 2008. Effects of Panax ginseng on stress. J. Ginseng Res. 32, 8-14.   DOI
14 Perry, J. D., Morris, K. A., James, A. L., Oliver, M. and Gloud, F. K. 2007. Evaluation of novel chromogenic substrates for the detection of bacterial ${\beta}$-glucosidase. J. Appl. Microbiol. 102, 410-415.
15 Liu, W. K., Xu, S. X. and Che, C. T. 2000. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci. 67, 1297-1306.   DOI
16 Ma, S. W., Benzie, I. F., Chu, T. T. W., Fok, B. S. P., Tomlinson, B. and Critchley, L. A. H. 2008. Effect of Panax ginseng supplementation on biomarkers of glucose tolerance, antioxidant status and oxidative stress in type 2 diabetic subjects: results of a placebo-controlled human intervention trial. Diabetes Obes. Metabol. 10, 1125-1127.   DOI
17 Martini, M. C., Bolweg, G. L., Levitt, M. D. and Savaiano, D. A. 1987. Lactose digestion by yoghurt ${\beta}$-galactosidase: Influence of pH and microbial cell integrity. Am. J. Clin. Nutr. 45, 432-437.   DOI
18 McAuliffe, O., Cano, R. J. and Klaenhammer, T. R. 2005. Genetic analysis of two bile salt hydrolase activity in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71, 4925-4929.   DOI
19 Park, J. H. 2004. Sun ginseng-a new processed ginseng with fortified activity. Food Ind. Nutr. 9, 23-27.
20 Quan, L. H., Min, J. W., Yang, D. U., Kim, Y. J. and Yang, D. C. 2012. Enzymatic biotransformation of ginsenoside $Rb_1$ to 20(S) $Rg_3$ by recombinant ${\beta}$-glucosidase from Microbacterium esteraromaticum. Appl. Microbiol. Biotechnol. 94, 377-384.   DOI
21 Quan, L. H., Liang, Z., Kim, H. B., Kim, S. H., Kim, S. Y., Noh, Y. D. and Yang, D. C. 2008. Conversion of ginsenoside Rd to compound K by crude enzymes extracted from Lactobacillius brevis LH8. J. Ginseng Res. 32, 226-231.   DOI
22 Quan, L. H., Kim, Y. J., Li, G. H., Choi, K. T. and Yang, D. C. 2013. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius. World J. Microbiol. Biotechnol. 29, 1001-1007.   DOI
23 Renchinkhand, G., Park, Y. W., Cho, S. H., Song, G. Y., Bae, H. C., Choi, S. J. and Nam, M. S. 2015. Identification of ${\beta}$-glucosidase activity of Lactobacillus plantarum CRNB22 in Kimchi and its potential to convert ginsenoside Rb1 from Panax ginseng. J. Food Biochem. 39, 155-163.   DOI
24 Renchinkhand, G., Park, Y. W., Song, G. Y., Cho, S. H., Urgamal, M., Bae, H. C., Choi, J. W. and Nam, M. S. 2016. Identification of ${\beta}$--glucosidase activity of Enterococcus faecalis CRNB-A3 in Airag and its potential to convert ginseno side Rb-1 from Panax ginseng. J. Food Biochem. 40, 120-129.   DOI
25 Erkki, S. and Petaja, E. 2000. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55, 297-300.   DOI
26 Ann, Y. G. 2011. Health supplement food and probiotics. Kor. J. Food Nutr. Winter Season Conference. pp. 32-43.
27 Begley, M., Hill, C. and Gahan, C. G. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729-1738.   DOI
28 De Smet, I., Hoorde, L. V., Saeyer, N. D. E., Woestyne, M. V. and Verstraete, W. 1994. In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microbiol. Ecol. Health Dis. 7, 315-329.   DOI
29 Hu, S. Y. 1976. The genus Panax (Ginseng) in Chinese medicine. Econ. Bot. 30, 11-28.   DOI
30 Hyun, M. S., Hur, J. M., Shin, Y. S., Song, B. J., Mun, Y. J. and Woo, W. H. 2009. Comparison study of White Ginseng, Red Ginseng, and fermented Red Ginseng on the protective effect of LPS-induced inflammation in RAW 264.7 cells. J. Appl. Biol. Chem. 52, 21-27.   DOI
31 Ji, G. E. 2011. Development of evidence based probiotic Bifidobacterium for the improvement of human health. Kor. J. Food Nutr. Winter Season Conference. pp. 77-89.
32 Kaur, I. P., Chopra, K. and Saini, A. 2002. Probiotics; potential pharmaceutical applications. Eur J. Pharm Sci. 15, 1-9.   DOI
33 Kang, K. S., Yamabe, N., Kim, H. Y., Park, J. H. and Yokozawa, T. 2010. Effects of heat-processed ginseng and its active component ginsenoside 20(S)-$Rg_3$ on the progression of renal damage and dysfunction in type 2 diabetic Otsuka Long-Evans Tokushima fatty rats. Biol. Pharm. Bull. 33, 1077-1081.   DOI