DOI QR코드

DOI QR Code

Functional Characteristics of Enterococcus faecium SA5 and Its Potential in Conversion of Ginsenoside Rb1 in Ginseng

Enterococcus faecium SA5의 기능적 특성과 인삼 ginsenoside Rb1의 전환

  • Kim, Eun-Ah (Seoul F&B Company) ;
  • Renchinkhand, Gereltuya (Division of Animal Resources Science, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Urgamal, Magsal (Division of Animal Resources Science, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Park, Young W. (Agricultural Research Station, Fort Valley State University) ;
  • Nam, Myoung Soo (Division of Animal Resources Science, College of Agriculture and Life Sciences, Chungnam National University)
  • 김은아 (서울F&B) ;
  • 랜친핸드 (충남대학교 농업생명과학대학 동물자원과학부) ;
  • 어르가말 막살 (충남대학교 농업생명과학대학 동물자원과학부) ;
  • 박영우 (포트벨리 주립대학교 농업연구본부) ;
  • 남명수 (충남대학교 농업생명과학대학 동물자원과학부)
  • Received : 2016.08.23
  • Accepted : 2017.02.18
  • Published : 2017.02.28

Abstract

The fermentation of Panax ginseng can yield many compounds from ginsenosides that have a wide variety of biological functions. Lactic acid bacteria (LAB) strains are capable of converting ginsenosides. The purposes of this study were to: (1) characterize Enterococcus faecium SA5, an isolated LAB from Mongolian mare milk, (2) identify the existence of extracellular ${\beta}$-glucosidase activity in the milk, and (3) ascertain if the ${\beta}$-glucosidase has the capacity of converting ginsenoside in Korean ginseng. The results revealed that E. faecium SA5 was acid-resistant, bile salt-resistant, and has antibiotic activities against 4 pathogenic microorganisms (Salmonella typhimurium KCTC 3216, Listeria monocytogenes KCTC 3710, Bacillus cereus KCTC 1012, Staphylococcus aureus KCTC 1621). In addition, E. faecium SA5 had tolerance against some antibiotics such as colistin, gentamycin and neomycin. It was also found that E. faecium SA5 possessed bile salt hydrolase activity, which could lower blood cholesterol level. When incubated in 10% (w/v) skim milk as a yogurt starter, E. faecium SA5 caused to decrease pH of the medium as well as increase in viable cell counts. Using TLC and HPLC analysis on the samples incubated in MRS broth, our study confirmed that E. faecium SA5 can produce ${\beta}$-glucosidase, which was capable of converting ginsenoside $Rb_1$ into new ginsenosides $Rg_3-s$ and $Rg_3-r$. It was concluded that E. faecium SA5 possessed a potential of probiotic activity, which could be applied to yogurt manufacture as well as ginsenoside conversion in ginseng.

본 연구는 몽골 마유로부터 분리한 유산균 Enterococcus faecium SA5의 이화학 특성을 파악하고 유산균 E. faecium SA5의 ${\beta}$-glucosidase의 활성과 이를 통한 ginsenoside 전환을 확인하는 것을 목표로 진행되었다. E. faecium SA5는 내산성, 내담즙성을 나타내었으며 4종의 병원성 미생물(Salmonella typhimurium KCTC 3216, Listeria monocytogenes KCTC 3710, Bacillus cereus KCTC 1012, Staphylococcus aureus KCTC 1621)에 항균 활성을 가질 뿐만 아니라 항생물질 colistin, gentamycin, neomycin에 내성을 나타내었다. 또한, E. faecium SA5는 bile salt hydrolase 활성을 나타내어 혈액 내 콜레스테롤 수준 감소 효과가 있다고 사료되며 10% skim milk에서 배양하였을 때, pH가 감소하고 산도 및 생균수가 증가하는 것으로 보아 발효유 스타터로써의 활성을 갖는 것으로 판단되었다. 또한 E. faecium SA5의 ${\beta}$-glucosidase에 의해 ginsenoside $Rb_1$이 ginsenoside $Rg_3-s$$Rg_3-r$으로 전환되었음을 TLC 분석을 통해 확인하였다. 따라서 E. faecium SA5는 잠재적인 probiotics로 이를 이용하여 발효유 제조 및 ginsenoside 전환 관련 건강기능식품 개발에 응용할 수 있을 것으로 사료된다.

Keywords

References

  1. Ann, Y. G. 2011. Health supplement food and probiotics. Kor. J. Food Nutr. Winter Season Conference. pp. 32-43.
  2. Begley, M., Hill, C. and Gahan, C. G. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  3. De Smet, I., Hoorde, L. V., Saeyer, N. D. E., Woestyne, M. V. and Verstraete, W. 1994. In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microbiol. Ecol. Health Dis. 7, 315-329. https://doi.org/10.3109/08910609409141371
  4. Erkki, S. and Petaja, E. 2000. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55, 297-300. https://doi.org/10.1016/S0309-1740(99)00156-4
  5. Hu, S. Y. 1976. The genus Panax (Ginseng) in Chinese medicine. Econ. Bot. 30, 11-28. https://doi.org/10.1007/BF02866780
  6. Hyun, M. S., Hur, J. M., Shin, Y. S., Song, B. J., Mun, Y. J. and Woo, W. H. 2009. Comparison study of White Ginseng, Red Ginseng, and fermented Red Ginseng on the protective effect of LPS-induced inflammation in RAW 264.7 cells. J. Appl. Biol. Chem. 52, 21-27. https://doi.org/10.3839/jabc.2009.004
  7. Ji, G. E. 2011. Development of evidence based probiotic Bifidobacterium for the improvement of human health. Kor. J. Food Nutr. Winter Season Conference. pp. 77-89.
  8. Kang, K. S., Yamabe, N., Kim, H. Y., Park, J. H. and Yokozawa, T. 2010. Effects of heat-processed ginseng and its active component ginsenoside 20(S)-$Rg_3$ on the progression of renal damage and dysfunction in type 2 diabetic Otsuka Long-Evans Tokushima fatty rats. Biol. Pharm. Bull. 33, 1077-1081. https://doi.org/10.1248/bpb.33.1077
  9. Kaur, I. P., Chopra, K. and Saini, A. 2002. Probiotics; potential pharmaceutical applications. Eur J. Pharm Sci. 15, 1-9. https://doi.org/10.1016/S0928-0987(01)00209-3
  10. Kim, J. Y. 2013. Probiotic Characteristics of Lactobacillus gasseri 3B2 and Its Use for Red Ginseng Fermentation. Master's Thesis of Bioresources & Technology. Yonsei Uni. Wonju. Korea
  11. Kim, H. S., Lee, E. H., Ko, S. R., Cho, K. J., Park, J. H. and Im, D. S. 2004. Effects of ginsenosides $Rg_3\;and\;Rh_2$ on the proliferation of prostate cancer cells. Arch. Pharm. Res. 27, 429-35. https://doi.org/10.1007/BF02980085
  12. Kim, Y. C., Lee, J. H., Kim, M. S. and Lee, N. G. 1985. Effect of the saponin fraction of Panax ginseng on catecholamines in mouse brain J. Arch. Pharm. Res. 8, 45-49. https://doi.org/10.1007/BF02897566
  13. Kong, Y. H., Lee, Y. C. and Choi, S. Y. 2009. Neuroprotective and anti-inflammatory effects of phenolic compounds in Panax ginseng C.A. Meyer. J. Ginseng Res. 33, 111-114. https://doi.org/10.5142/JGR.2009.33.2.111
  14. Lee, Y. J., Kim, H. Y., Kang, K. S., Lee, J. G., Yokozawa, T. and Park, J. H. 2008. The chemical and hydroxyl radical scavenging activity changes of ginsenoside $Rb_1$ by heat processing. Bioorg. Med. Chem. Lett. 18, 4515-4520. https://doi.org/10.1016/j.bmcl.2008.07.056
  15. Lee, M. J., Kim, E. H. and Rhee, D. K. 2008. Effects of Panax ginseng on stress. J. Ginseng Res. 32, 8-14. https://doi.org/10.5142/JGR.2008.32.1.008
  16. Liu, W. K., Xu, S. X. and Che, C. T. 2000. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci. 67, 1297-1306. https://doi.org/10.1016/S0024-3205(00)00720-7
  17. Ma, S. W., Benzie, I. F., Chu, T. T. W., Fok, B. S. P., Tomlinson, B. and Critchley, L. A. H. 2008. Effect of Panax ginseng supplementation on biomarkers of glucose tolerance, antioxidant status and oxidative stress in type 2 diabetic subjects: results of a placebo-controlled human intervention trial. Diabetes Obes. Metabol. 10, 1125-1127. https://doi.org/10.1111/j.1463-1326.2008.00858.x
  18. Martini, M. C., Bolweg, G. L., Levitt, M. D. and Savaiano, D. A. 1987. Lactose digestion by yoghurt ${\beta}$-galactosidase: Influence of pH and microbial cell integrity. Am. J. Clin. Nutr. 45, 432-437. https://doi.org/10.1093/ajcn/45.2.432
  19. McAuliffe, O., Cano, R. J. and Klaenhammer, T. R. 2005. Genetic analysis of two bile salt hydrolase activity in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71, 4925-4929. https://doi.org/10.1128/AEM.71.8.4925-4929.2005
  20. Park, J. H. 2004. Sun ginseng-a new processed ginseng with fortified activity. Food Ind. Nutr. 9, 23-27.
  21. Perry, J. D., Morris, K. A., James, A. L., Oliver, M. and Gloud, F. K. 2007. Evaluation of novel chromogenic substrates for the detection of bacterial ${\beta}$-glucosidase. J. Appl. Microbiol. 102, 410-415.
  22. Quan, L. H., Min, J. W., Yang, D. U., Kim, Y. J. and Yang, D. C. 2012. Enzymatic biotransformation of ginsenoside $Rb_1$ to 20(S) $Rg_3$ by recombinant ${\beta}$-glucosidase from Microbacterium esteraromaticum. Appl. Microbiol. Biotechnol. 94, 377-384. https://doi.org/10.1007/s00253-011-3861-7
  23. Quan, L. H., Liang, Z., Kim, H. B., Kim, S. H., Kim, S. Y., Noh, Y. D. and Yang, D. C. 2008. Conversion of ginsenoside Rd to compound K by crude enzymes extracted from Lactobacillius brevis LH8. J. Ginseng Res. 32, 226-231. https://doi.org/10.5142/JGR.2008.32.3.226
  24. Quan, L. H., Kim, Y. J., Li, G. H., Choi, K. T. and Yang, D. C. 2013. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius. World J. Microbiol. Biotechnol. 29, 1001-1007. https://doi.org/10.1007/s11274-013-1260-1
  25. Renchinkhand, G., Park, Y. W., Cho, S. H., Song, G. Y., Bae, H. C., Choi, S. J. and Nam, M. S. 2015. Identification of ${\beta}$-glucosidase activity of Lactobacillus plantarum CRNB22 in Kimchi and its potential to convert ginsenoside Rb1 from Panax ginseng. J. Food Biochem. 39, 155-163. https://doi.org/10.1111/jfbc.12116
  26. Renchinkhand, G., Park, Y. W., Song, G. Y., Cho, S. H., Urgamal, M., Bae, H. C., Choi, J. W. and Nam, M. S. 2016. Identification of ${\beta}$--glucosidase activity of Enterococcus faecalis CRNB-A3 in Airag and its potential to convert ginseno side Rb-1 from Panax ginseng. J. Food Biochem. 40, 120-129. https://doi.org/10.1111/jfbc.12201
  27. Shinkai, K, Akedo, H., Mukai, M., Imamura, F., Isoai, A., Kobayashi, M. and Kitagawa, I. 1996. Inhibition of in vitro tumor cell invasion by ginsenoside $Rg_3$. Jap. J. Cancer Res. 87, 357-362. https://doi.org/10.1111/j.1349-7006.1996.tb00230.x
  28. Stavro, P. M., Woo, M., Heim, T. F., Leiter, L. A. and Vuksan, V. 2005. North American ginseng exerts a neutral effect on blood pressure in individuals with hypertension. Hypertension 46, 406-411. https://doi.org/10.1161/01.HYP.0000173424.77483.1e
  29. Trinh, H. T., Han, S. J., Kim, S. W., Lee, Y. C. and Kim, D. H. 2007. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J. Microbiol. Biotechnol. 17, 1127-1133.
  30. Yan, Q., Zhou, W., Li, X., Feng, M. and Zhou, P. 2008. Purification method improvement and characterization of a novel ginsenosidehydrolyzing beta-glucosidase from Paecilomyces bainier sp. 229. Biosci. Biotech. Biochem. 72, 352-359. https://doi.org/10.1271/bbb.70425
  31. Yi, E. J., Lee, J. M., Yi, T. H., Cho, S. C., Park, Y. J. and Kook, M. C. 2012. Biotransformation of Ginsenoside by Lactobacillus brevis THK-D57 Isolated from Kimchi. Kor. J. Food Nutr. 25, 629-636. https://doi.org/10.9799/ksfan.2012.25.3.629
  32. Yun, T. K., Lee, Y. S., Lee, Y. H., Kim, S. I. and Yun, H. Y. 2001. Anticarcinogenic effect of Panax ginseng C. A. Meyer and identification of active compounds. J. Kor. Med. Sci. 16, 6-18. https://doi.org/10.3346/jkms.2001.16.S.S6
  33. Zhang, R., Jie, J., Zhou, Y., Cao, Z. and Li., W. 2009. Long-term effects of Panax ginseng on disposition of fexofenadine in rats in vivo. Am. J. Chin. Med. 37, 657-667. https://doi.org/10.1142/S0192415X09007144

Cited by

  1. Changes in ginsenoside patterns of red ginseng extracts according to manufacturing and storage conditions 2017, https://doi.org/10.1007/s10068-017-0149-4