• Title/Summary/Keyword: laccase

Search Result 300, Processing Time 0.029 seconds

Trametes sp. CJ-105에 의한 염료의 색도제거

  • Kim, Hyun-Soo;Oh, Kwang-Keun;Lee, Cheol-Woo;Lee, Jae-Heung;Jeon, Yeong-Joong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.630-635
    • /
    • 1997
  • Decolorization of congo red, methyl orange, poly R478, remazol brilliant blue R and crystal violet by white-rot fungus Trametes sp. CJ-105, isolated in Korea, was investigated. Remazol blue and methyl orange were almost completely decolorized after 2 days of culture, but congo red, crystal violet and poly R478 were decolorized by about 80%, 40% and 30% after 10 days of culture, respectively. As a result of determination of cell mass and enzyme activity, it was shown that color removal efficiency was related to cell mass and enzyme activity, and also found that only laccase (E.C.1.10.3.2) activity was existed in the culture broth. The decolorization ratios of remazol blue in the concentrations of 100ppm to 3, 000 ppm were 85% and above after 2 days of culture. In this study, we found that white-rot fungus, Trametes sp. CJ-105, was effective in decolorizing a wide range of structurally different synthetic dyes.

  • PDF

Isolation and Characterization of White Rot Fungi for Decolorization of Several Synthetic Dyes (염료의 색도 제거능력이 우수한 백색부후균 분리 및 특성연구)

  • 오광근;김현수;조무환;채영규;전영중
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.500-508
    • /
    • 1999
  • Several white-rot fungi collected from the mountains of Korea were evaluated for their ability to decolorize azo, polymeric, and reactive dyes. Strains CJ-105, CJ-212 and CJ-315, identified as Trametes sp., Pleurotus sp. and Fomes sp., respectively, showed higher potential for decolorization of those dyes in either solid or liquid media. For Trametes sp. CJ-105, 100ppm of Remazol Brilliant blue R and 500ppm of Acid Red 264 were completely decolorized after 2 days under liquid culture. The dominating ligninolytic enzyme existing in the culture broth was laccase (E.C. 1.10.3.2). Also, Pleurotus sp. CJ-212 and Fomes sp. CJ-315 showed similar patterns in decolorization of Remazol Brilliant Blue R and Acid Red 264. The extent of decolorization of the dyes in liquid culture was found to be proportional to the activities of the ligninolytic of decolorization of the dyes in liquid culture was found to be proportional to the activities of the ligninolytic enzymes produced by each strain. In addition to that Trametes sp. CJ-105 was highly effective in degradation of polycyclic aromatic hydrocarbons and pentachlorophenol by the activity of the ligninolytic enzymes produced. In this study, we found that white-rot fungi, Trametes sp. CJ-105(KFCC 10941), Pleurotus sp. CJ-212(KFCC 10943) and Fomes sp. CJ-315(KFCC 10942), were effective in decolorizing a wide range of structurally different synthetic dyes, as well as some chemical compounds which are known to be hardly degradable.

  • PDF

Biodegradation of Endocrine-disrupting Bisphenol A by White Rot Fungus Irpex lacteus

  • Shin, Eun-Hye;Choi, Hyoung-Tae;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1147-1151
    • /
    • 2007
  • Biodegradation of endocrine-disrupting bisphenol A was investigated with several white rot fungi (Irpex lacteus, Trametes versicolor, Ganoderma lucidum, Polyporellus brumalis, Pleurotus eryngii, Schizophyllum commune) isolated in Korea and two transformants of T. versicolor (strains MrP 1 and MrP 13). I. lacteus degraded 99.4% of 50 mg/l bisphenol A in 3 h incubation and 100% in 12 h incubation. which was the highest degradation rate among the fungal strains tested. T. versicolor degraded 98.2% of 50 mg/l bisphenol A in 12 h incubation. Unexpectedly, the transformant of the Mn-repressed peroxidase gene of T. versicolor, strain MrP 1, degraded 76.5% of 50 mg/l bisphenol A in 12 h incubation, which was a lower degradation rate than wild-type T. versicolor. The removal of bisphenol A by I. lacteus occurred mainly by biodegradation rather than adsorption. Optimum carbon sources for biodegradation of bisphenol A by I. lacteus were glucose and starch, and optimum nitrogen sources were yeast extract and tryptone in a minimal salts medium; however, bisphenol A degradation was higher in nutrient-rich YMG medium than that in a minimal salts medium. The initial degradation of endocrine disruptors was accompanied by the activities of manganese peroxidase and laccase in the culture of I. lacteus.

Functional Characterization of Genes Located at the Aurofusarin Biosynthesis Gene Cluster in Gibberella zeae

  • Kim, Jung-Eun;Kim, Jin-Cheol;Jin, Jian-Ming;Yun, Sung-Hwan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.8-16
    • /
    • 2008
  • Aurofusarin is a polyketide pigment produced by some Fusarium species. The PKS12 and GIP1 genes, which encode a putative type I polyketide synthase (PKS) and a fungal laccase, respectively, are known to be required for aurofusarin biosynthesis in Gibberella zeae (anamorph: Fusarium graminearum). The ten additional genes, which are located within a 30 kb region of PKS12 and GIP1 and regulated by a putative transcription factor (GIP2), organize the aurofusarin biosynthetic cluster. To determine if they are essential for aurofusarin production in G. zeae, we have employed targeted gene deletion, complementation, and chemical analyses. GIP7, which encodes O-methyltransferase, is confirmed to be required for the conversion of norrubrofusarin to rubrofusarin, an intermediate of aurofusarin. GIP1-, GIP3-, and GIP8-deleted strains accumulated rubrofusarin, indicating those gene products are essential enzymes for the conversion of rubrofusarin to aurofusarin. Based on the phenotypic changes in the gene deletion strains examined, we propose a possible pathway for aurofusarin biosynthesis in G. zeae. Our results would provide important information for better understanding of naphthoquinone biosynthesis in other fdarnentous fungi as well as the aurofusarin biosynthesis in G. zeae.

Optimization of in Vitro Cultivation of Inonotus Obliquus

  • Cho, Nam-Seok;Shin, Yu-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.92-98
    • /
    • 2005
  • This study was performed to get the basic information concerned to the optimum culture condition of Inonotus obliquus. Several solid media, PDA, MEA and Czapek-Dox, and three liquid media were adopted for the in vitro cultivation. Some main features of the fungal morphological characteristics under cultivation conditions were observed and described. Preliminary results showed that appearance of the mycelial mat, hyphal size and substrate pigmentation differed according to the media. The PDA medium was the most favorable substrate for the growth on solid culture, followed by MEA and Czapek-Dox media. Concerned to the addition of amino acids, 5 amino acids, such as alanine, alginine, isoleucine, leucine and threonine, enhanced to the mycelial growth. Isoleucine was shown the best fungal growth. An important morphological hyphal structure for the fungus, the setae, was found in abundance and diverse its shape and size. In liquid culture, fresh potato broth was the best growth stimulant of the fungus, followed by Malt extract and potato broth. Addition of yeast extract to the liquid media had improved the biomass, but not laccase production.

Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1

  • Olukanni, O.D.;Osuntoki, A.A.;Awotula, A.O.;Kalyani, D.C.;Gbenle, G.O.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.843-849
    • /
    • 2013
  • A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2-(1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

Water Absorption Properties and Biodegradability of Lignin/PVA Nanofibrous Webs (리그닌/PVA 나노섬유 웹의 수분 특성 및 생분해성 평가)

  • Song, Youjung;Lee, Eunsil;Lee, Seungsin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.3
    • /
    • pp.517-526
    • /
    • 2017
  • The biodegradation and water absorption properties of lignin/poly(vinyl alcohol) (PVA) nanofibrous webs are investigated. Lignin/PVA nanofibrous webs containing 0, 50, and 85wt% of lignin were prepared via an electrospinning process to observe the effect of the lignin concentration on the biodegradability and water absorption properties of lignin/PVA nanofibrous webs. The morphology of the materials was examined by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). To understand the wetting behavior and hydrophilic nature of the electrospun lignin/PVA nanofibrous webs, the water absorbency, contact angle, and water uptake were examined. The enzymatic degradation of lignin/PVA nanofibrous webs was investigated using laccase by measuring total organic carbon (TOC) concentration over a course of 50 days. Water drops were absorbed immediately into all of the specimens. The water uptake of lignin/PVA nanofibrous webs increased as the amount of PVA in the lignin/PVA hybrid webs increased. The enzymatic degradation experiment indicated that the inherent biodegradability of lignin was retained after its transformation into nanofibers. Our findings imply that blending these two types of polymers is promising because it can lead to the development of a new range of multifunctional materials such as antimicrobial absorbent nanotextiles based on sustainable biopolymers.

Physicochemical and Biological Characteristics of Flavonoids Isolated from the Heartwoods of Rhus verniciflua (옻나무 목질부에서 분리된 플라보노이드의 이화학적 및 생물학적 특징)

  • Kwon, Sang-Hyuk;Kim, Gap-Tae;Lee, Kyung-Tae;Choi, Jung-Hye;Choi, Jong-Won;Park, Kun-Young;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.3
    • /
    • pp.345-350
    • /
    • 2000
  • From the heartwood of Rhus verniciflua, four known flavonoids (1-4) were isolated along with an unknown one (5). Compounds 1-4 were identified to be garbanzol, sulfuretin, fisetin and fustin by NMR data. NMR data of 1-4 were fully assigned by the aids of 2D-NMR spectra. Among these compounds, only sulfuretin had significant cytotoxic and antioxidant ability at high concentrations. In addition, it seems likely that the 5-hydroxy-lacking flavonoids could not influence on the activity of laccase with cofactor of cupric cation, which catalyzes oxidative coupling reaction, in this plant.

  • PDF

USE OF ENZYMES FOR MODIFICATION OF DISSOLVED AND COLLOIDAL SUBSTANCES IN PROCESS WATERS OF MECHANICAL PULPING

  • Johanna Buchert;Annikka Mustrnata;Peter Spetz;Rainer Ekman;Kari Luukko
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.115-119
    • /
    • 1999
  • During mechanical pulp production and blcaching wood components, such as extractives, carbohydrates and lignin are dissolved and dispersed into the process waters. These components are called dissolved and colloidal substances(DCS). DCS can accumulate during water circulation and can in turn affect paper machine runnability and also the strength and optical properties of the paper. In this work DCS fraction origination from TMP process were treated with enzymes acting on triglycerides. glucomannans, and lignin and the effect of enzymatic treatments on the water composition as well as sheet properies were evaluated. Lipases were found to modify the chemical structure of the extractives resulting in more hydrophilic fibre surface and subsequent improvement in the sheet strength properties. Mannanase treatment, on the other hand, destabilized pitch. As a result, aggregation of pitch to the fibres was observed which in turn resulted in impaired strength properties. Laccase could effectively polymerize lignans and the reaction products seemed to be sorbed onto the fibres.

Production of ligninolytic enzymes by Pleurotus ostreatus No. 42 in various culture media (다양한 배지에서 느타리버섯 No. 42균주로부터 리그닌분해효소 생산)

  • Ha, Hyo-Cheol
    • Journal of Mushroom
    • /
    • v.11 no.2
    • /
    • pp.87-91
    • /
    • 2013
  • When No. 42 strain of Pleurotus ostreatus was cultivated at five different media, MnP and Lac but no LiP activity was detected throughout the culture period in the media. The production of MnP and Lac by No. 42 strain of Pleurotus ostreatus were correlated with wheat bran composition in the medium. In the liquid culture, maximum production of MnP and Lac were observed in the medium contained glucose-peptone- yeast-wheat bran(GPYW). However, in solid medium, maximum production of MnP was observed in wood meal-wheat bran(WMW) medium, but that of Lac was observed in wheat bran(W) medium.