DOI QR코드

DOI QR Code

Water Absorption Properties and Biodegradability of Lignin/PVA Nanofibrous Webs

리그닌/PVA 나노섬유 웹의 수분 특성 및 생분해성 평가

  • Received : 2017.03.21
  • Accepted : 2017.04.26
  • Published : 2017.06.30

Abstract

The biodegradation and water absorption properties of lignin/poly(vinyl alcohol) (PVA) nanofibrous webs are investigated. Lignin/PVA nanofibrous webs containing 0, 50, and 85wt% of lignin were prepared via an electrospinning process to observe the effect of the lignin concentration on the biodegradability and water absorption properties of lignin/PVA nanofibrous webs. The morphology of the materials was examined by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). To understand the wetting behavior and hydrophilic nature of the electrospun lignin/PVA nanofibrous webs, the water absorbency, contact angle, and water uptake were examined. The enzymatic degradation of lignin/PVA nanofibrous webs was investigated using laccase by measuring total organic carbon (TOC) concentration over a course of 50 days. Water drops were absorbed immediately into all of the specimens. The water uptake of lignin/PVA nanofibrous webs increased as the amount of PVA in the lignin/PVA hybrid webs increased. The enzymatic degradation experiment indicated that the inherent biodegradability of lignin was retained after its transformation into nanofibers. Our findings imply that blending these two types of polymers is promising because it can lead to the development of a new range of multifunctional materials such as antimicrobial absorbent nanotextiles based on sustainable biopolymers.

Keywords

References

  1. Ago, M., Okajima, K., Jakes, J. E., Park, S., & Rojas, O. J. (2012). Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules, 13(3), 918-926. doi:10.1021/bm201828g
  2. American Association of Textile Chemists and Colorists. (2011). Absorbency of textiles (Standard: AATCC 79-2010). Research Triangle Park, NC: Author.
  3. Chang, G. S., & Koo, H. J. (2011). 생분해성 고분자의 생분해도 평가법 및 인증 동향 [Biodegradability evaluation method and certification trend of biodegradable polymers]. Fiber Technology and Industry, 15(3), 214-222.
  4. Göpferich, A. (1997). Mechanisms of polymer degradation and elimination. In A. J. Domb, J. Kost, & D. M. Wiseman (Eds.), Handbook of biodegradable polymers (pp. 451-473). Boca Raton, FL: CRC Press.
  5. Hatakeyama, H., & Hatakeyama, T. (1998). Interaction between water and hydrophilic polymers. Thermochimica Acta, 308(1-2), 3-22. doi:10.1016/S0040-6031(97)00325-0
  6. Hatakeyama, H., & Hatakeyama, T. (2010). Lignin structure, properties, and applications. Advances in Polymer Science, 232, 1-63. doi:10.1007/12_2009_12
  7. Kai, D., Jiang, S., Low, Z. W., & Loh, X. J. (2015). Engineering highly stretchable lignin-based electrospun nanofibers for potential biomedical applications. Journal of Materials Chemistry B, 30, 6194-6204. doi:10.1039/C5TB00765H
  8. Kim, Y. C., Jun, H. S., Chang, H. N., & Woo, S. I. (1992). Optimal conditions for enzymatic degradation of polycaprolactone. Journal of the Korean Institute of Chemical Engineers, 30(6), 718-724.
  9. Korbag, I., & Saleh, S. M. (2016). Studies on mechanical and biodegradability properties of PVA/lignin blend films. International Journal of Environmental Studies, 73(1), 18-24. doi:10.1080/00207233.2015.1082249
  10. Lee, E., & Lee, S. (2014). Fabrication of lignin nanofibers using electrospinning. Journal of the Korean Society of Clothing Textiles, 38(3), 372-385. doi:10.5850/JKSCT.2014.38.3.372
  11. Lee, E., Song, Y., & Lee, S. (in press). Crosslinking of lignin/poly(vinyl alcohol) nanocomposite fiber webs and their antimicrobial and UV-protective properties. Textile Research Journal.
  12. Lee, E. S. (2014). Fabrication of lignin nanofibers and evaluation of the antimicrobial property and biodegradability. Unpublished master's thesis, Yonsei University, Seoul.
  13. Liu, Y., Wu, N., Wei, Q., Cai, Y., & Wei, A. (2008). Wetting behavior of electrospun poly(L-lactic acid)/poly(vinyl alcohol) composite nonwovens. Journal of Applied Polymer Science, 110(5), 3172-3177. doi:10.1002/app.28904
  14. Müller, R. J. (2005). Biodegradability of polymers: Regulations and methods for testing. Biopolymers Online. Advance online publication. doi:10.1002/3527600035.bpola012
  15. Oliviero, M., Verdolotti, L., Maio, E. D., Aurilia, M., & Iannace, S. (2011). Effect of supramolecular structures on thermoplastic zein-lignin bionanocomposites. Journal of Agricultural and Food Chemistry, 59(18), 10062-10070. doi:10.1021/jf201728p
  16. Perez, J., Munoz-Dorado, J., de la Rubia, T., & Martinez, J. (2002). Biodegradation and biological treatment of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53-63. doi:10.1007/s10123-002-0062-3
  17. Poursorkhabi, V., Mohanty, A. K., & Misra, M. (2015). Electrospinning of aqueous lignin/poly(ethylene oxide) complexes. Journal of Applied Polymer Science, 132(2), 41260. doi:10.1002/app.41260
  18. Shabafrooz, V., Mozafari, M., Vashaee, D., & Tayebi, L. (2014). Electrospun nanofibers: From filteration membranes to highly specialized tissue engineering scaffolds. Journal of Nanoscience and Nanotechnology, 14(1), 522-534. doi:10.1166/jnn.2014.9195
  19. Su, L., Xing, Z., Wang, D., Xu, G., Ren, S., & Fang, G. (2013). Mechanical properties research and structural characterization of alkali lignin / poly(vinyl alcohol) reaction films. BioResources, 8(3), 3532-3543. doi:10.15376/biores.8.3.3532-3543
  20. Thakur, V. K., Thakur, M. K., Raghavan, P., & Kessler, M. R. (2014). Progress in green polymer composites from lignin for multifunctional applications: A review. ACS Sustainable Chemical Engineering, 2(5), 1072-1092. doi:10.1021/sc500087z