DOI QR코드

DOI QR Code

Production of ligninolytic enzymes by Pleurotus ostreatus No. 42 in various culture media

다양한 배지에서 느타리버섯 No. 42균주로부터 리그닌분해효소 생산

  • Ha, Hyo-Cheol (Department of Herbal Food Science, Daegu Haany University)
  • 하효철 (대구한의대학교 한방식품약리학과)
  • Received : 2013.06.05
  • Accepted : 2013.06.20
  • Published : 2013.06.30

Abstract

When No. 42 strain of Pleurotus ostreatus was cultivated at five different media, MnP and Lac but no LiP activity was detected throughout the culture period in the media. The production of MnP and Lac by No. 42 strain of Pleurotus ostreatus were correlated with wheat bran composition in the medium. In the liquid culture, maximum production of MnP and Lac were observed in the medium contained glucose-peptone- yeast-wheat bran(GPYW). However, in solid medium, maximum production of MnP was observed in wood meal-wheat bran(WMW) medium, but that of Lac was observed in wheat bran(W) medium.

느타리 버섯 No. 42균주를 5가지 배지에서 연구한 결과, 리그닌 분해효소인 Lac와 MnP는 생산되었으나 LiP는 생산되지 않았다. 실험한 본 균주의 경우 리그닌 분해효소인 Lac와 MnP의 생산에 밀기울이 관여하는 것을 확인 할 수 있었다. 액체배지에서는 GPYW에서 Lac(2.4 U/ml)와 MnP(3.6 U/ml)가 최대 생산됨을 알 수 있었으며 고체배지에서는 WMW에서 MnP(4.0 U/ml)가 최대 생산되었으며 W에서는 Lac(11.0 U/ml)가 최대 생산되었다.

Keywords

References

  1. 하효철 2012. 느타리로부터 리그닌 셀룰로오스분해효소 생산 균주 선발 및 효소 생산. 한국버섯학회지 10 : 74-82.
  2. 하효철, 이재성 2004. 액체배양한 느타리버섯균(Pleurotus ostreatus)으로부터 망간퍼옥시데이즈의 생산 및 특성. 응용생명화학회지 47 : 22-26.
  3. Elisashvili, V. and Kachlishvili, E. 2009. Physiological regulation of laccase and manganese peroxidase production by White-rot Basidiomycetes. J. Biotech. 144 : 37-42. https://doi.org/10.1016/j.jbiotec.2009.06.020
  4. Forrester, I. T., Grabski, A., C., Mishra, C., Kelley, B., L., Strickland, W., N., Leatham , G., F. and Burgess, R. R. 1990. Characteristics and N-terminal amino acid sequence of a manganese peroxidase purified from Lentinula edodes cultures grown on a commercial wood substrate. Appl. Microbiol. Biotechnol. 33 : 359-365. https://doi.org/10.1007/BF00164536
  5. Glenn, J. K. and Gold, M. H. 1985. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242 : 329-341. https://doi.org/10.1016/0003-9861(85)90217-6
  6. Gold, M. H. and Alic, M. 1993. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol. Rev. 57 : 605-622.
  7. Kall, J. E. E., Field, J. A., and Joyce, T. W. 1995. Increasing ligninolytic enzyme activities in several white-rot basidiomycetes by nitrogen-sufficient media. Bioresour. Technol. 53 : 133-139.
  8. Kirk, T. K., Croan, S., Tien, M., Murtagh, K,, E. and Farrell, R. L. 1986. Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb. Technol. 8 : 27-32. https://doi.org/10.1016/0141-0229(86)90006-2
  9. Kirk, T. K. and Chang, H.-M. 1981. Potential applications of bio-ligninolytic systems. Enzyme Microb. Technol. 3 : 189-196. https://doi.org/10.1016/0141-0229(81)90085-5
  10. Keyser, P., Kirk, T. K. and Zeikus, J. G. 1978. Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lginin in response to nitrogen starvation. J. Bacteriol. 135 : 790-797.
  11. Ha, H.-C., Honda, Y., Watanabe, T. and Kuwahara, M. 2001. Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl. Microbiol. Biotechnol. 55 : 704-711. https://doi.org/10.1007/s002530100653
  12. Iwamoto, K., Ha, H.-C., Honda, Y., Watanabe, T. and Kuwahara, M. 1997. Isolation and characterization of manganese(II) peroxidase(MnP) produced by Pleurotus ostreatus. Wood Res. 84 : 34-36.
  13. Kamitsuji, H., Honda, Y., Watanabe, T. and Kuwahara, M. 2004. Production and induction of manganese peroxidase isoenzymes in a white-rot fungus Pleurotus ostreatus. Appl. Microbiol. Biotechnol. 65 : 287-294.
  14. Leathan, G., F. 1985. Extracellular enzymes produced by the cultivated mushroom Lentinus edodes during degradation of a lignocellulosic medium. Appl. Environ. Microbiol. 50 : 859-867.
  15. Leisola, M. S. A., Kozulic, B., Meussdoerffer, F. and Fiechter, A. 1987. Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. J. Biol. Chem. 262 : 419-424.
  16. Martnez, A. T., Ruiz-Dueas, F. J., Martnez, M. J., Del Ro, J. C. and Gutirrez, A. 2009. Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol. 20 : 348-357. https://doi.org/10.1016/j.copbio.2009.05.002
  17. Palma, C., Martinez, A. T., Lema, J. M. and Martinez, M. J. 2000. Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. J. Biotechnol. 77 : 235-245. https://doi.org/10.1016/S0168-1656(99)00218-7
  18. Piscitelli, A., Del Vecchio, C., Faraco, V., Giardina, P., Macellaro, G., Miele, A., Pezzella, C. and Sannia, G. 2011. Fungal laccases: versatile tools for lignocellulose trans-formation. C. R. Biol. 334 : 789-794. https://doi.org/10.1016/j.crvi.2011.06.007
  19. Ruiz-Rodriguez, A., Polonia, I., Soler-Rivas, C. and Wichers, H. J. 2011. Ligninolytic enzymes activities of oyster mushrooms cultivated on OMW(olive mill waste) supplemented media, spawn and substrates. International Biodeterioration & Biodegradation. 65 : 285-293. https://doi.org/10.1016/j.ibiod.2010.11.014
  20. Stajic M., Persky, L., Friesem, D., Hadar, Y., Wasser, S. P., Nevo, E. and Vukojevic, J. 2006. Effect of different carbon and nitrogen sources on laccase and peroxidase production by selected Pleurotus species. Enzyme Microb. Technol. 38 : 65-73. https://doi.org/10.1016/j.enzmictec.2005.03.026
  21. Thurston, C. F. 1994. The structure and function of fungal laccases. Microbiology 140 : 19-26. https://doi.org/10.1099/13500872-140-1-19

Cited by

  1. The mycelial growth and ligninolytic enzyme activity of cauliflower mushroom (Sparassis latifolia) vol.13, pp.4, 2017, https://doi.org/10.1080/21580103.2017.1387612