• Title/Summary/Keyword: lL-4 polymorphism

Search Result 152, Processing Time 0.033 seconds

Positional mapping for foxglove aphid resistance with 180k SNP array in soybean [Glycine max (L.) Merr.]

  • Park, Sumin;Kim, Kyung Hye;Go, Hong Min;Lee, Ju Seok;Jung, Jin Kyo;Bilyeu, Kristin D.;Lee, Jeong-Dong;Kan, Sungtaeg
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.145-145
    • /
    • 2017
  • Foxglove aphid, Aulacorthum solani (Kaltenbach), is a Hemipteran insect that infected a wide variety of plants worldwide and caused serious yield losses in crops. The objective of this study was to identify the putative genes to foxglove aphid resistance in wild soybean, PI 366121 (Glycine soja Sieb. and Zucc.). One hundred and forty-one F4:8 recombinant inbred lines developed from a cross between susceptible variety, Williams 82 and foxglove aphid resistance wild soybean, PI 366121 were used. The two type of resistance response, antibiosis and antixenosis resistance were evaluated through choice and no-choice test, graded by the degree of total plant damage and primary infestation leaf damage; a genome-wide molecular linkage map was constructed with 29,898 single-nucleotide polymorphism markers utilizing a Axiom(R) 180K soyaSNP array. Using inclusive composite interval mapping analysis for foxglove aphid resistance, one major candidate QTL on chromosome 7 was identified. The major QTL on chromosome 7 showed both antixenosis and antibiosis resistance responses. The newly identified major QTL was consistent with previously reported QTL, Raso2, which showed around 5 times narrow down interval range with 8 candidate genes. Furthermore, total 1,115 soybean varieties including Glycine soja and Glycine max were exposed to germplasm screening, and 31 varieties, which showed significant antibiosis type foxglove aphid resistance were identified. This result could be useful in breeding for new foxglove aphid resistant soybean cultivars and developing novel insecticides.

  • PDF

Genetic Diversity and Population Structure of Peanut (Arachis hypogaea L.) Accessions from Five Different Origins

  • Zou, Kunyan;Kim, Ki-Seung;Lee, Daewoong;Jun, Tae-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.447-456
    • /
    • 2020
  • Peanut is an allotetraploid derived from a single recent polyploidization. Polyploidization has been reported to have caused significant loss in genetic diversity during the domestication of cultivated peanuts. Single nucleotide polymorphism (SNP)-based markers such as cleaved amplified polymorphic sequences (CAPS) derived from next-generation sequencing (NGS) have been developed and widely applied for breeding and genetic research in peanuts. This study aimed to identify the genetic diversity and population structure using 30 CAPS markers and 96 peanut accessions from five different origins. High genetic dissimilarities were detected between the accessions from Korea and those from the other three South American origins generally regarded as the origin of peanuts, while the accessions from Brazil and Argentina presented the lowest genetic dissimilarity. Based on the results of the present study, accessions from Korea have unique genetic variation compared to those from other countries, while accessions from the other four origins are closely related. Our study identified the genetic differentiation in 96 peanut accessions from five different origins, and this study also showed the successful application of SNP information derived from re-sequencing based on NGS technology.

Genome-Wide SNP Calling Using Next Generation Sequencing Data in Tomato

  • Kim, Ji-Eun;Oh, Sang-Keun;Lee, Jeong-Hee;Lee, Bo-Mi;Jo, Sung-Hwan
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.36-42
    • /
    • 2014
  • The tomato (Solanum lycopersicum L.) is a model plant for genome research in Solanaceae, as well as for studying crop breeding. Genome-wide single nucleotide polymorphisms (SNPs) are a valuable resource in genetic research and breeding. However, to do discovery of genome-wide SNPs, most methods require expensive high-depth sequencing. Here, we describe a method for SNP calling using a modified version of SAMtools that improved its sensitivity. We analyzed 90 Gb of raw sequence data from next-generation sequencing of two resequencing and seven transcriptome data sets from several tomato accessions. Our study identified 4,812,432 non-redundant SNPs. Moreover, the workflow of SNP calling was improved by aligning the reference genome with its own raw data. Using this approach, 131,785 SNPs were discovered from transcriptome data of seven accessions. In addition, 4,680,647 SNPs were identified from the genome of S. pimpinellifolium, which are 60 times more than 71,637 of the PI212816 transcriptome. SNP distribution was compared between the whole genome and transcriptome of S. pimpinellifolium. Moreover, we surveyed the location of SNPs within genic and intergenic regions. Our results indicated that the sufficient genome-wide SNP markers and very sensitive SNP calling method allow for application of marker assisted breeding and genome-wide association studies.

Effect of alcohol dehydrogenase 1C (ADH1C) genotype on vitamin A restriction and marbling in Korean native steers

  • Peng, Dong Qiao;Jung, U Suk;Lee, Jae Sung;Kim, Won Seob;Jo, Yong Ho;Kim, Min Jeong;Oh, Young Kun;Baek, Youl Chang;Hwang, Seong Gu;Lee, Hong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1099-1104
    • /
    • 2017
  • Objective: This work was to find the correlation of alcohol dehydrogenase 1C (ADH1C) genotype with vitamin A reduction and carcass traits during the vitamin A restriction period. Methods: In study 1, 60 Korean native steers were fed a diet (890 IU/kg) with 8,000 IU and 0 IU of supplemental premix vitamin A/kg of dry matter (DM) for control and treatment group, respectively. The levels of serum vitamin A were analyzed through high preparative performance liquid chromatography, and the ADH1C genotype was analyzed based on polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP; 78.1% TT type, 21.9% TC type); however, CC type was not found. Then, the interaction between ADH1C and carcass traits on the vitamin A restriction was investigated in study 2. A total of 136 Korean native steers were fed a diet that included 930 IU/kg vitamin A of DM. Results: Serum vitamin A in treatment was reduced to 112.4 IU/dL in steers with TT type of ADH1C, while for steers with TC type the concentration of serum vitamin A was dropped to 79.5 IU/dL (p<0.1) in study 1. This showed that TC type had the potential to lower serum vitamin A concentration during vitamin A restriction compared to TT type. In study 2 we found that eye muscle area, marbling and carcass weight in Korean native steers with TC type were higher than in steers with TT type (p<0.05). Conclusion: The interaction between vitamin A restriction and TC type of ADH1C gene could have the potential of increasing the marbling in Korean native steers. These results indicated that steers with TC type of the ADH1C gene were more sensitive to the change of serum vitamin A than TT types. Furthermore, this finding has the potential to enable a higher marbling score under the condition of vitamin A restriction in Korean native steers.

Genetic diversity of Halla horses using microsatellite markers

  • Seo, Joo-Hee;Park, Kyung-Do;Lee, Hak-Kyo;Kong, Hong-Sik
    • Journal of Animal Science and Technology
    • /
    • v.58 no.11
    • /
    • pp.40.1-40.5
    • /
    • 2016
  • Background: Currently about 26,000 horses are breeding in Korea and 57.2% (14,776 horses) of them are breeding in Jeju island. According to the statistics published in 2010, the horses breeding in Jeju island are subdivided into Jeju horse (6.1%), Thoroughbred (18.8%) and Halla horse (75.1%). Halla horses are defined as a crossbreed between Jeju and Thoroughbred horses and are used for horse racing, horse riding and horse meat production. However, little research has been conducted on Halla horses because of the perception of crossbreed and people's weighted interest toward Jeju horses. Method: Using 17 Microsatellite (MS) Markers recommended by International Society for Animal Genetics (ISAG), genomic DNAs were extracted from the hair roots of 3,880 Halla horses breeding in Korea and genetic diversity was identified by genotyping after PCR was performed. Results and conclusion: In average, 10.41 alleles (from 6 alleles in HTG7 to 17 alleles in ASB17) were identified after the analysis using 17 MS Markers. The mean value of $H_{obs}$ was 0.749 with a range from 0.612(HMS1) to 0. 857(ASB2). Also, it was found that $H_{\exp}$ and PIC values were lowest in HMS1 (0.607 and 0.548, respectively), and highest in LEX3(0.859 and 0.843, respectively), and the mean value of $H_{\exp}$ was 0.760 and that of PIC was 0.728. 17 MS markers used in this studies were considered as appropriate markers for the polymorphism analysis of Halla horses. The frequency for the appearance of identical individuals was $5.90{\times}10^{-20}$ when assumed as random mating population and when assumed as half-sib and full-sib population, frequencies were $4.08{\times}10^{-15}$ and $3.56{\times}10^{-8}$, respectively. Based on these results, the 17 MS markers can be used adequately for the Individual Identification and Parentage Verification of Halla horses. Remarkably, allele M and Q of ASB23 marker, G of HMS2 marker, H and L of HTG6 marker, L of HTG7 marker, E of LEX3 marker were the specific alleles unique to Halla horses.

Parameters Affecting Polymerase Chain Reaction in RAPD Analysis of Pleurotus spp. (느타리버섯속(屬)의 DNA 다형성분석(多型性分析)에 영향(影響)을 미치는 PCR 조건(條件))

  • Kim, Beom-Gi;Jeong, Mi-Jeong;Lee, Chang-Soo;Lee, Hee-Kyung;Yoo, Young-Bok;Ryu, Jin-Chang
    • The Korean Journal of Mycology
    • /
    • v.23 no.3 s.74
    • /
    • pp.202-208
    • /
    • 1995
  • This study describes the effects of several components on PCR amplification used for RAPD. We used different concentrations of reaction components to obtaine discrete and reproducible PCR products from Pleurotus cornucopiae. The optimum concentrations of reaction components were found to be 80 ng of template DNA, 30 pmole of 10-mer primer, $200\;{\mu}M$ dNTP, 2mM $MgCl_2$, 50 mM KCl, 10 mM Tris-HCl(pH 9.0), 0.1% Triton X-100, 1.5 unit of Taq DNA polymerase (promega) in $50\;{\mu}l$ reaction volume. The optimum annealing temperature was $35^{\circ}C$. These results proved to be valuable for characterization of Pleurotus spp.

  • PDF

Interactions Between MTHFR C677T - A1298C Variants and Folic Acid Deficiency Affect Breast Cancer Risk in a Chinese Population

  • Wu, Xia-Yu;Ni, Juan;Xu, Wei-Jiang;Zhou, Tao;Wang, Xu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2199-2206
    • /
    • 2012
  • Background: Our objective was to evaluate the MTHFR C677T-A1298C polymorphisms in patients with breast cancer and in individuals with no history of cancer, to compare the levels of genetic damage and apoptosis under folic acid (FA) deficiency between patients and controls, and to assess associations with breast cancer. Methods: Genetic damage was marked by micronucleated binucleated cells (MNBN) and apoptosis was estimated by cytokinesis-block micronucleus assay (CBMN). PCR-RFLP molecular analysis was carried out. Results: The results showed significant associations between the MTHFR 677TT or the combined MTHFR C677T-A1298C and breast cancer risk (OR = 2.51, CI = 0.85 to 7.37, p = 0.08; OR = 4.11, CI = 0.78 to 21.8, p < 0.001). The MNBN from the combined MTHFR C677T-A1298C was higher and the apoptosis was lower than that of the single variants (p < 0.05). At 15 to 60 nmol/L FA, the MNBN in cases with the TTAC genotype was higher than controls (p < 0.05), whereas no significant difference in apoptosis was found between the cases and controls after excluding the genetic background. Conclusions: Associations between the combined MTHFR C677T-A1298C polymorphism and breast cancer are possible from this study. A dose of 120 nmol/L FA could enhance apoptosis in cases with MTHFR C677T-A1298C. Breast cancer individuals with the TTAC genotype may be more sensitive to the genotoxic effects of FA deficiency than controls.

Development of Functional Markers for Detection of Inactive DFR-A Alleles Responsible for Failure of Anthocyanin Production in Onions (Allium cepa L.)

  • Park, Jaehyuk;Cho, Dong Youn;Moon, Jin Seong;Yoon, Moo-Kyoung;Kim, Sunggil
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.72-79
    • /
    • 2013
  • Inactivation of the gene coding for dihydroflavonol 4-reductase (DFR) is responsible for the color difference between red and yellow onions (Allium cepa L.). Two inactive DFR-A alleles, DFR-$A^{PS}$ and DFR-$A^{DEL}$, were identified in our previous study. A functional marker was developed on the basis of the premature stop codon that inactivated the DFR-$A^{PS}$ allele. A derived cleaved amplified polymorphic sequences (dCAPS) primer was designed to detect the single nucleotide polymorphism, an A/T transition, which produced the premature stop codon. Digested PCR products clearly distinguished the homozygous and heterozygous red $F_2$ individuals. Meanwhile, to develop a molecular marker for detection of the DFR-$A^{DEL}$ allele in which entire DFR-A gene was deleted, genome walking was performed and approximately 3 kb 5' and 3' flanking sequences of the DFR-$A^R$ coding region were obtained. PCR amplification using multiple primers binding to the extended flanking regions showed that more of the extended region of the DFR-A gene was deleted in the DFR-$A^{DEL}$ allele. A dominant simple PCR marker was developed to identify the DFR-$A^{DEL}$ allele using the dissimilar 3' flanking sequences of the DFR-A gene and homologous DFR-B pseudogene. Distribution of the DFR-$A^{PS}$ and DFR-$A^{DEL}$ alleles in yellow onion cultivars bred in Korea and Japan was surveyed using molecular makers developed in this study. Results showed predominant existence of the DFR-$A^{PS}$ allele in yellow onion cultivars.

Genetic Variation Analysis of Arabidopsis (Arabidopsis thaliana L.) Plants Induced by Acute and Chronic Gamma Irradiation (감마선 완·급조사에 따른 애기장대의 유전적 유연관계 분석)

  • Goh, Eun Jeong;Kim, Jin-Baek;Ha, Bo-Keun;Kim, Sang Hoon;Kang, Si-Yong;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.347-352
    • /
    • 2011
  • In order to identify the genetic relationship analysis by acute and chronic gamma irradiation, Arabidopsis (Arabidopsis thaliana L.) were irradiated with 200 Gy of gamma-rays using gamma-irradiator (3,000 Ci; Nordion, Canada) and gamma-phytotron (400 Ci; Nordion, Canada) for acute and chronic irradiation, respectively. Genetic relationship among two acute gamma-irradiated plants (A1 and A24) and three chronic gamma-irradiated plants (C1W, C2W, C3W) were analyzed using the amplified fragment length polymorphism (AFLP) technique compared with each non-irradiated plant. A total of 28 EcoRI and MseI primer combinations were used to screen 8 treatments by the ABI3130 capillary electrophoresis system. Amplified products by 28 primer sets showed 1,679 bands with an average of 51 bands per primer combination. Out of the total bands scored, 1,164 fragments were polymorphic bands, with different alleles existing among the treatments. The cluster analysis was performed using the UPGMA (Unweighted Pair Group Method using Arithmetic) in the computer program NTSYS-pc. In clustery analysis, acute gamma-irradiation showed higher genetic variation compared with chronic gamma-irradiation.

Lack of the Association between Microsatellite Polymorphism in Toll-like Receptor 2 Gene and Development of COPD (Toll-like Receptor 2 유전자의 Microsatellite 유전자 다형성과 만성폐쇄성폐질환 발생과의 연관성 결여)

  • Lee, Hee Seok;Lee, Hye Won;Kim, Deog Kyeom;Ko, Dong Seok;Park, Gun Min;Hwang, Yong Il;Lee, Sang-Min;Yoo, Chul Gyu;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yim, Jae-Joon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.4
    • /
    • pp.367-374
    • /
    • 2005
  • Background : The fact that only 10-20% of chronic cigarette smokers develop chronic obstructive pulmonary disease (COPD) reflects the presence of genetic factors associated with the susceptibility to COPD. Recently, it was reported that the surfactant protein A increases the secretion of matrix metalloprotease 9, which degrades extracellular matrices of the lung, through a Toll-like receptor 2 (TLR2). In this context, possible role of TLR2 in the pathogenesis of COPD was postulated, and a functional dinucleotide repeat polymorphism in intron II of TLR2 was evaluated for any association with COPD. Method : Male patients with COPD and male smokers with a normal pulmonary function were enrolled in this study. The number of Guanine-Thymine repeats in intron II of the TLR2 gene were counted. Because the distributions of the repeats were trimodal, the alleles were classified into three subclasses, 12-16 repeats: short (S) alleles; 17-22 repeats: medium length (M) alleles; and 23-27 repeats: long (L) alleles. Result : 125 male patients with COPD and 144 age- and gender-matched blood donors with a normal lung function were enrolled. There were no differences in the distribution of each allele subclass (S, M and L) between the COPD and control group (p=0.75). The frequencies of the genotypes with and without each allele subclass in the COPD and control group were similar. Conclusion : A microsatellite polymorphism in intron II of TLR2 gene was not associated with the development of COPD in Koreans.