References
- Andrew JV, Douglas GA (2001). Analysing controlled trials with baseline and follow up measurements. Brit Med J, 323, 1123-4. https://doi.org/10.1136/bmj.323.7321.1123
- Beilbya J, Ingramb D, Hahnelc R, Rossia E (2004). Reduced breast cancer risk with increasing serum folate in a case-control study of the C677T genotype of the methylenetetrahydrofolate reductase gene. Eur J Cancer, 40, 1250-4. https://doi.org/10.1016/j.ejca.2004.01.026
- Bistulfi G, Vandette E, Matsui S, Smiraglia DJ (2010). Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells. BMC Biol, 8, 6. https://doi.org/10.1186/1741-7007-8-6
- Bouckaert KP, Slimani N, Nicolas G, et al (2011). Critical evaluation of folate data in European and international databases: Recommendations for standardization in international nutritional studies. Mol Nutr Food Res, 55, 166-80. https://doi.org/10.1002/mnfr.201000391
- Campbell IG, Baxter SW, Eccles DM, Choong DY (2002). Methylenetetrahydrofolate reductase polymorphism and susceptibility to breast cancer. Breast Cancer Res, 4, R14. https://doi.org/10.1186/bcr457
- Celtikci B, Lawrance AK, Wu Q, Rozen R (2009). Methotrexateinduced apoptosis is enhanced by altered expression of methylenetetrahydrofolate reductase. Anticancer Drugs, 20, 787-93. https://doi.org/10.1097/CAD.0b013e32832f4aa8
- Crott JW, Mashiyama ST, Ames BN, Fenech M (2001). The effect of folic acid deficiency and MTHFR C677T polymorphism on chromosome damage in human lymphocytes in vitro. Cancer Epidemiol Biomarkers Prev, 10, 1089-96.
- Dhillon V, Thomas P, Fenech M (2009). Effect of common polymorphisms in folate uptake and metabolism genes on frequency of micronucleated lymphocytes in a South Australian cohort. Mutat Res, 665, 1-6. https://doi.org/10.1016/j.mrfmmm.2009.02.007
- Eichholzer M, Tonz O, Zimmermann R (2006). Folic acid: a public-health challenge. Lancet, 367, 1352-61. https://doi.org/10.1016/S0140-6736(06)68582-6
- Everson RB, Wehr CM, Erexson GL, MacGregor JT (1988). Association of marginal folate depletion with increased human chromosomal damage in vivo: demonstration by analysis of micronucleated erythrocytes. J Natl Cancer Inst, 80, 525-9. https://doi.org/10.1093/jnci/80.7.525
- Fenech M, Crott JW (2002). Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient human lymphocytes-evidence for breakage- fusion-bridge cycles in the cytokinesis-block micronucleus assay. Mutat Res, 504, 131-6. https://doi.org/10.1016/S0027-5107(02)00086-6
- Fenech M (2006). Cytokinesis-block micronucleus assay evolves into a "cytome" assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res, 600, 58-66. https://doi.org/10.1016/j.mrfmmm.2006.05.028
- Fenech M (2001). The role of folic acid and vitamin B12 in genomic stability of human cells. Mutat Res, 475, 56-67.
- Friso S, Choi SW, Girelli D, et al (2002). A common mutation in the 5, 10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate staus. Proc Natl Acad Sci USA, 99, 5606-11. https://doi.org/10.1073/pnas.062066299
- Guttenbach M, Schmid M (1994). Exclusion of specific human chromosomes into micronuclei by 5-azacytidine treatment in lymphocyte cultures. Exp Cell Res, 211, 127-32. https://doi.org/10.1006/excr.1994.1068
- Huang L, Song X, Zhu W, Li Y (2008). Plasma homocysteine and gene polymorphisms associated with the risk of hyperlipidemia in northern Chinese subjects. Biomed Environ Sci, 21, 514-20. https://doi.org/10.1016/S0895-3988(09)60011-8
- Johnson J, Mejia de EG (2011). Dietary factors and pancreatic cancer. The role of food bioactive compounds. Mol Nutr Food Res, 55, 58-73. https://doi.org/10.1002/mnfr.201000420
- Kim YI (1999). Folate and carcinogenesis: evidence, mechanisms and implications. J Nutr Biochem, 10, 66-8. https://doi.org/10.1016/S0955-2863(98)00074-6
- Kim YI, Baik HW, Fawaz K, et al (2001). Effects of folate supplementation on two provisional molecular markers of colon cancer: a prospective, randomized trial. Am J Gastroenterol, 96, 184-95. https://doi.org/10.1111/j.1572-0241.2001.03474.x
- Lin KW, Birmingham E (2010). Folic Acid for the prevention of neural tube defects. Am Fam Physician, 82, 1533.
- Maruti SS, Ulrich CM, White E (2009). Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr, 89, 624-33. https://doi.org/10.3945/ajcn.2008.26568
- Mazza D, Chapman A (2010). Improving the uptake of preconception care and periconceptional folate supplementation: what do women think. BMC Public Health, 23, 786.
- Ni J, Lu L, Fenech M, Wang X (2010). Folate Deficiency in Human peripheral blood lymphocytes induces chromosome 8 aneuploidy but this effect is not modified by riboflavin. Environ Mol Mutagen, 51, 15-22.
- Promthet SS, Pientong C, Ekalaksananan T, et al (2010). Risk factors for colon cancer in Northeastern Thailand: interaction of MTHFR codon 677 and 1298 genotypes with environmental factors. J Epidemiol, 20, 329-338. https://doi.org/10.2188/jea.JE20090140
-
Quinlivan EP, Davis SR, Shelnutt KP, et al (2005). Methylenetetrahydrofolate reductase 677Cg
$\rightarrow$ T polymorphism and folate status affect one-carbon incorporation into human DNA deoxynucleosides. J Nutr, 135, 389-96. https://doi.org/10.1093/jn/135.3.389 - Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB (2000). Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr, 72, 998-1003. https://doi.org/10.1093/ajcn/72.4.998
- Rodrigues JO, Galbiatti AL, Ruiz MT (2010). Polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene and risk of head and neck squamous cell carcinoma. Braz J Otorhinolaryngol, 76, 776-82. https://doi.org/10.1590/S1808-86942010000600017
- Ruosaari ST, Nymark PE, Aavikko MM, et al (2008). Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro. Carcinogenesis, 29, 913-17. https://doi.org/10.1093/carcin/bgn068
- Skibola CF, Smith MT, Hubbard A, et al (1999). Polymorphism in the methylene-tetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci USA, 96, 12810-5. https://doi.org/10.1073/pnas.96.22.12810
- Song J, Geltinger C, Sun K, Kanazawa I, Yokoyama KK (1999). Direct lysis method for the rapid preparation of plasmid DNA. Anal Biochem, 271, 89-91. https://doi.org/10.1006/abio.1999.4106
- Suleeporn S, Yasunori S, Hiromi S, et al (2010). Genetic polymorphisms in folate and alcohol metabolism and breast cancer risk: a case-control study in Thai women. Breast Cancer Res Treat, 123, 885-93. https://doi.org/10.1007/s10549-010-0804-4
- Thomas P, Fenech M (2008). Chromosome 17 and 21 aneuploidy in buccal cells is increased with ageing and in Alzheimer's disease. Mutagenesis, 23, 57-65.
- Thomas P, Fenech M (2008). Methylenetetrahydrofolate reductase, common polymorphisms, and relation to disease. Vitam Horm, 79, 375-92. https://doi.org/10.1016/S0083-6729(08)00413-5
- Wang X, Thomas P, Xue J, Fenech M (2004). Folate deficiency induces aneuploidy in human lymphocytes in vitro-evidence using cytokinesis-blocked cells and probes specific for chromosomes 17 and 21. Mutation Res, 551, 167-80. https://doi.org/10.1016/j.mrfmmm.2004.03.008
- Wang X, Wu X, Liang Z, et al (2006). A comparison of folic acid deficiency-induced genomic instability in lymphocytes of breast cancer patients and normal non-cancer controls from a Chinese population in Yunnan. Mutagenesis, 21, 41-7. https://doi.org/10.1093/mutage/gei069
- Wei Q, Shen H, Wang LE, et al (2003). Association between low dietary folate intake and suboptimal cellular DNA repair capacity. Cancer Epidemiol Biomarkers Prev, 12, 963-9.
- Weisberg I, Tran P, Christensen B, Sibani S, Rozen R (1998). A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab, 64, 169-72. https://doi.org/10.1006/mgme.1998.2714
- Wu X, Liang Z, Zou T, Wang X (2009). Effects of folic acid deficiency and MTHFR C677T polymorphisms cytotoxicity in human peripheral blood lymphocytes. BBRC, 379, 732-7.
- Xiao WL, Wu M, Shi B (2006). Folic acid rivals methylenetetrahydrofolate reductase (MTHFR) genesilencing effect on MEPM cell proliferation and apoptosis. Mol Cell Biochem, 292, 145-54. https://doi.org/10.1007/s11010-006-9228-1
- Xu GL, Bestor TH, Bourc'his D, et al (1999). Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature, 402, 187-91. https://doi.org/10.1038/46052
- Yang QH, Botto LD, Gallagher M, et al (2008). Prevalence and effects of gene-gene and gene-nutrient interactions on serum folate and serum total homocysteine concentrations in the United States: findings from the third National Health and Nutrition Examination Survey DNA Bank. Am J Clin Nutr, 88, 232-46. https://doi.org/10.1093/ajcn/88.1.232
-
Yi P, Pogribny I, James JS (2002). Multiplex PCR for simultaneous detection of 677Cg
$\rightarrow$ T and 1298Ag$\rightarrow$ C polymorphisms in methylenetetrahydrofolate reductase gene for population studies of cancer risk. Cancer Lett, 181, 209-13. https://doi.org/10.1016/S0304-3835(02)00060-5 - Zoodsma M, Nolte IM, Schipper M, et al (2005). Methylenetetrahydrofolate reductase (MTHFR) and susceptibility for (pre)neoplastic cervical disease. Hum Genet, 116, 247-54. https://doi.org/10.1007/s00439-004-1233-4
Cited by
- Germ-line MTHFR C677T, FV H1299R and PAI-1 5G/4G Variations in Breast Carcinoma vol.14, pp.5, 2013, https://doi.org/10.7314/APJCP.2013.14.5.2903
- The Methylenetetrahydrofolate Reductase C677T Polymorphism and Breast Cancer Risk in Asian Populations vol.15, pp.14, 2014, https://doi.org/10.7314/APJCP.2014.15.14.5853
- Association of methylenetetrahydrofolate reductase and methionine synthase polymorphisms with breast cancer risk and interaction with folate, vitamin B6, and vitamin B12 intakes vol.35, pp.12, 2014, https://doi.org/10.1007/s13277-014-2456-1
- Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk in Chinese population: a meta-analysis of 22 case–control studies vol.35, pp.2, 2014, https://doi.org/10.1007/s13277-013-1234-9
- A meta-analysis of genotypes and haplotypes of methylenetetrahydrofolate reductase gene polymorphisms in breast cancer vol.41, pp.9, 2014, https://doi.org/10.1007/s11033-014-3450-9
- Increased Micronucleus Frequency in Peripheral Blood Lymphocytes Contributes to Cancer Risk in the Methyl Isocyanate-Affected Population of Bhopal vol.16, pp.10, 2015, https://doi.org/10.7314/APJCP.2015.16.10.4409
- The association between methylenetetrahydrofolate reductase gene C677T polymorphisms and breast cancer risk in Chinese population vol.36, pp.12, 2015, https://doi.org/10.1007/s13277-015-3321-6
- Controversial roles of methylenetetrahydrofolate reductase polymorphisms and folate in breast cancer disease vol.66, pp.1, 2015, https://doi.org/10.3109/09637486.2014.959896
- Association between MTHFR gene 1298A>C polymorphism and breast cancer susceptibility: a meta-analysis based on 38 case-control studies with 40,985 subjects vol.14, pp.1, 2016, https://doi.org/10.1186/s12957-016-0978-2
- A network-based pathway-expanding approach for pathway analysis vol.17, pp.S17, 2016, https://doi.org/10.1186/s12859-016-1333-x
- Population-level diversity in the association of genetic polymorphisms of one-carbon metabolism with breast cancer risk vol.7, pp.4, 2016, https://doi.org/10.1007/s12687-016-0277-1
- The Role of Genetic Polymorphisms as Related to One-Carbon Metabolism, Vitamin B6, and Gene–Nutrient Interactions in Maintaining Genomic Stability and Cell Viability in Chinese Breast Cancer Patients vol.17, pp.7, 2016, https://doi.org/10.3390/ijms17071003