Lack of the Association between Microsatellite Polymorphism in Toll-like Receptor 2 Gene and Development of COPD

Toll-like Receptor 2 유전자의 Microsatellite 유전자 다형성과 만성폐쇄성폐질환 발생과의 연관성 결여

  • Lee, Hee Seok (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Lee, Hye Won (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Kim, Deog Kyeom (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Ko, Dong Seok (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Park, Gun Min (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Hwang, Yong Il (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Lee, Sang-Min (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Yoo, Chul Gyu (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Kim, Young Whan (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Han, Sung Koo (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Shim, Young-Soo (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine) ;
  • Yim, Jae-Joon (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine)
  • 이희석 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 이혜원 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 김덕겸 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 고동석 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 박근민 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 황용일 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 이상민 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 유철규 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 김영환 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 한성구 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 심영수 (서울대학교 의과대학 내과학교실 및 폐 연구소) ;
  • 임재준 (서울대학교 의과대학 내과학교실 및 폐 연구소)
  • Received : 2005.01.17
  • Accepted : 2005.03.07
  • Published : 2005.04.30

Abstract

Background : The fact that only 10-20% of chronic cigarette smokers develop chronic obstructive pulmonary disease (COPD) reflects the presence of genetic factors associated with the susceptibility to COPD. Recently, it was reported that the surfactant protein A increases the secretion of matrix metalloprotease 9, which degrades extracellular matrices of the lung, through a Toll-like receptor 2 (TLR2). In this context, possible role of TLR2 in the pathogenesis of COPD was postulated, and a functional dinucleotide repeat polymorphism in intron II of TLR2 was evaluated for any association with COPD. Method : Male patients with COPD and male smokers with a normal pulmonary function were enrolled in this study. The number of Guanine-Thymine repeats in intron II of the TLR2 gene were counted. Because the distributions of the repeats were trimodal, the alleles were classified into three subclasses, 12-16 repeats: short (S) alleles; 17-22 repeats: medium length (M) alleles; and 23-27 repeats: long (L) alleles. Result : 125 male patients with COPD and 144 age- and gender-matched blood donors with a normal lung function were enrolled. There were no differences in the distribution of each allele subclass (S, M and L) between the COPD and control group (p=0.75). The frequencies of the genotypes with and without each allele subclass in the COPD and control group were similar. Conclusion : A microsatellite polymorphism in intron II of TLR2 gene was not associated with the development of COPD in Koreans.

연구배경 : 장기간 흡연을 하는 사람의 10-20%에서만 COPD가 발생한다는 사실은 COPD의 발생에 유전적 인자가 관여함을 시사한다. 최근 surfactant protein A가, COPD의 병인에 중요한 역할을 하는 것으로 알려진 MMP-9의 분비를 TLR2를 통해 증가시킨다고. 그러므로 COPD의 병인에 TLR2이 역할을 할 수 있을 것이라는 가정 아래, TLR2 유전자의 intron II에 존재하는 Guanine-Thymine (GT)의 반복으로 이루어진 유전자다형성과 한국인에서의 COPD의 발생과의 연관성을 규명하고자 하였다. 방 법 : 흡연력이 있는 남자 COPD 환자와 정상 폐기능을 보이는 남자 흡연자를 대상으로 하여, TLR2 유전자의 intron II의 GT 반복횟수를 확인하였다. 그 GT 반복이 3상성의 분포를 보여 이들을 다시 세 개의 맞섬 유전자 아형으로 분류하여 분석하였다. (12-16회 GT 반복: 짧은 아형; 17-22회 반복: 중간 아형; 23-27회 반복: 긴 아형) 결 과 : 각각의 맞섬유전자 아형의 분포는 125명의 COPD군과 144명의 대조군 사이에 유의한 차이는 없었다(P=0.75). 또한 각각의 맞섬유전자 아형의 유무에 따른 유전형의 빈도도 두 군간의 차이는 관찰할 수 없었다. 결 론 : TLR2 유전자의 intron II에 존재하는 GT 반복으로 이루어진 유전자다형성은 한국인에서 COPD의 발생과 연관되어 있지 않다.

Keywords

References

  1. Mortality patterns--preliminary data, United States, 1996. MMWR Morb Mortal Wkly Rep 1997;46:941-4
  2. Michaud CM, Murray CJ, Bloom BR. Burden of disease-implications for future research. Jama 2001;285:535-9 https://doi.org/10.1001/jama.285.5.535
  3. Sullivan SD, Ramsey SD, Lee TA. The economic burden of COPD. Chest 2000;117: 5S-9S https://doi.org/10.1378/chest.117.1.5
  4. BascomR. Differential susceptibility to tobacco smoke:possible mechanisms. Pharmacogenetics 1991;1: 102-6 https://doi.org/10.1097/00008571-199111000-00008
  5. Redline S, Tishler PV, Lewitter FI, Tager IB, Munoz A, Speizer FE. Assessment of genetic and nongenetic influences on pulmonary function. A twin study. Am Rev Respir Dis 1987;135:217-22
  6. Givelber RJ, Couropmitree NN, Gottlieb DJ, Evans JC, Levy D, Myers RH, et al. Segregation analysis of pulmonary function among families in the Framingham Study. Am J Respir Crit Care Med 1998;157:1445-51 https://doi.org/10.1164/ajrccm.157.5.9704021
  7. Black LF, Kueppers F. alpha1-Antitrypsin deficiency in nonsmokers. Am Rev Respir Dis 1978;117:421-8
  8. O'Brien ML, Buist NR, Murphey WH. Neonatal screening for alpha1-antitrypsin deficiency. J Pediatr 1978;92:1006-10. https://doi.org/10.1016/S0022-3476(78)80388-6
  9. Silverman EK. Genetic Epidemiology of COPD. Chest 2002;121:1S-6S https://doi.org/10.1378/chest.121.1.11
  10. Sandford AJ, Silverman EK. Chronic obstructive pulmonary disease. 1: Susceptibility factors for COPD the genotype-environment interaction. Thorax 2002;57:736-41 https://doi.org/10.1136/thorax.57.8.736
  11. Medzhitov R, Janeway CA, Jr. Innate immunity: the virtues of a nonclonal systemof recognition. Cell 1997;91:295-8 https://doi.org/10.1016/S0092-8674(00)80412-2
  12. Medzhitov R, Janeway C, Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 2000;173:89-97 https://doi.org/10.1034/j.1600-065X.2000.917309.x
  13. Finlay GA, O'Driscoll LR, Russell KJ, D'Arcy EM, Masterson JB, FitzGerald MX, et al. Matrix metallo-proteinase expression and production by alveolar macrophages in emphysema. Am J Respir Crit Care Med 1997;156:240-7 https://doi.org/10.1164/ajrccm.156.1.9612018
  14. Finlay GA, Russell KJ, McMahon KJ, D'Arcy E M, Masterson JB, FitzGerald MX, et al. Elevated levels of matrix metalloproteinases in bronchoalveolar lavage fluid of emphysematous patients. Thorax 1997;52:502-6 https://doi.org/10.1136/thx.52.6.502
  15. Betsuyaku T, Nishimura M, Takeyabu K, Tanino M, Venge P, Xu S, et al. Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with sub-clinical emphysema. Am J Respir Crit Care Med 1999;159:1985-91 https://doi.org/10.1164/ajrccm.159.6.9809043
  16. Segura-Valdez L, Pardo A, Gaxiola M, Uhal BD, Becerril C, Selman M. Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 2000;117:684-94 https://doi.org/10.1378/chest.117.3.684
  17. Vazquez de Lara LG, Umstead TM, Davis SE, Phelps DS. Surfactant protein A increases matrix metalloproteinase-9 production by THP-1 cells. Am J Physiol Lung Cell Mol Physiol 2003;285:L899-906 https://doi.org/10.1152/ajpcell.00110.2003
  18. Yim JJ, Ding L, A.A. S, Park GY, Shim YS, Holland SM. A microsatellite polymorphism in intron 2 of human toll-like receptor 2: Functional Implications and Racial Differences. FEMS Immunol Med Biol 2004;(In press)
  19. McGinnis RE, Spielman RS. Insulin gene 5' flanking polymorphism. Length of class 1 alleles in number of repeat units. Diabetes 1995;44:1296-302 https://doi.org/10.2337/diabetes.44.11.1296
  20. Yamada N, Yamaya M, Okinaga S, Nakayama K, Sekizawa K, Shibahara S, et al. Microsatellite poly-morphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 2000;66:187-95 https://doi.org/10.1086/302729
  21. Bartmann K, Fooke-Achterrath M, Koch G, Nagy I, Schutz I, Weis E, et al. Heterozygosity in the Pisystemas a pathogenetic cofactor in chronic obstructive pulmonary disease (COPD). Eur J Respir Dis 1985;66:284-96
  22. Seersholm N, Wilcke JT, Kok-Jensen A, Dirksen A. Risk of hospital admission for obstructive pulmonary disease in alpha(1)-antitrypsin heterozygotes of phenotype PiMZ. Am J Respir Crit Care Med 2000;161:81-4 https://doi.org/10.1164/ajrccm.161.1.9812131
  23. Kalsheker NA, Watkins GL, Hill S, Morgan K, Stockley RA, Fick RB. Independent mutations in the flanking sequence of the alpha-1-antitrypsin gene are associated with chronic obstructive airways disease. Dis Markers 1990;8:151-7
  24. Poller W, Meisen C, Olek K. DNA polymorphisms of the alpha 1-antitrypsin gene region in patients with chronic obstructive pulmonary disease. Eur J Clin Invest 1990;20:1-7
  25. Poller W, Faber JP, Scholz S, Weidinger S, Bartholome K, Olek K, et al. Mis-sense mutation of alpha 1-anti-chymotrypsin gene associated with chronic lung disease. Lancet 1992;339:1538
  26. Smith CA, Harrison DJ. Association between poly-morphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet 1997;350:630-3 https://doi.org/10.1016/S0140-6736(96)08061-0
  27. Harrison DJ, Cantlay AM, Rae F, Lamb D, Smith CA. Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol 1997;16:356-60 https://doi.org/10.1177/096032719701600703
  28. Baranova H, Perriot J, Albuisson E, Ivaschenko T, Baranov VS, Hemery B, et al. Peculiarities of the GSTM1 0/0 genotype in French heavy smokers with various types of chronic bronchitis. Hum Genet 1997;99:822-6 https://doi.org/10.1007/s004390050455
  29. Ishii T, Matsuse T, Teramoto S, Matsui H, Miyao M, Hosoi T, et al. Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax 1999;54:693-6 https://doi.org/10.1136/thx.54.8.693
  30. Sakao S, Tatsumi K, Igari H, Shino Y, Shirasawa H, 6. Givelber RJ, Couropmitree NN, Gottlieb DJ, Evans JC, Levy D, Myers RH, et al. Segregation analysis of pulmonary function among families in the Framingham Study. Am J Respir Crit Care Med 1998;157:1445-51 https://doi.org/10.1164/ajrccm.157.5.9704021
  31. Alvarez-Granda L, Cabero-Perez MJ, Bustamante-Ruiz A, Gonzalez-Lamuno D, Delgado-Rodriguez M, Garcia-Fuentes M. PI SZ phenotype in chronic obstructive pulmonary disease. Thorax 1997; 52: 659-61 https://doi.org/10.1136/thx.52.7.659
  32. Benetazzo MG, Gile LS, Bombieri C, Malerba G, Massobrio M, Pignatti PF, et al. alpha 1-antitrypsin TAQ I polymorphism and alpha 1-antichymotrypsin mutations in patients with obstructive pulmonary disease. Respir Med 1999;93:648-54 https://doi.org/10.1016/S0954-6111(99)90105-1
  33. Morgan K, Scobie G, Kalsheker NA. Point mutation in a 3' flanking sequence of the alpha-1-antitrypsin gene associated with chronic respiratory disease occurs in a regulatory sequence. Hum Mol Genet 1993;2:253-7 https://doi.org/10.1093/hmg/2.3.253
  34. Sandford AJ, Chagani T, Weir TD, Pare PD. Alpha 1-antichymotrypsin mutations in patients with chronic obstructive pulmonary disease. Dis Markers 1998; 13:257-60 https://doi.org/10.1155/1998/867620
  35. Yim JJ, Park GY, Lee CT, Kim YW, Han SK, Shim YS, et al. Genetic susceptibility to chronic obstructive pulmonary disease in Koreans: combined analysis of polymorphic genotypes for microsomal epoxide hydrolase and glutathione S-transferase M1 and T1. Thorax 2000;55:121-5 https://doi.org/10.1136/thorax.55.2.121
  36. Yim JJ, Yoo CG, Lee CT, Kim YW, Han SK, Shim YS. Lack of association between glutathione S-trans-ferase P1 polymorphism and COPD in Koreans. Lung 2002;180:119-25 https://doi.org/10.1007/s004080000086
  37. Higham MA, Pride NB, Alikhan A, Morrell NW. Tumour necrosis factor-alpha gene promoter poly-morphism in chronic obstructive pulmonary disease. Eur Respir J 2000;15:281-4 https://doi.org/10.1034/j.1399-3003.2000.15b10.x
  38. Pravica V, Asderakis A, Perrey C, Hajeer A, Sinnott PJ, Hutchinson IV. In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet 1999;26:1-3 https://doi.org/10.1046/j.1365-2370.1999.00122.x
  39. Khani-Hanjani A, Lacaille D, Hoar D, Chalmers A, Horsman D, Anderson M, et al. Association between dinucleotide repeat in non-coding region of interferongamma gene and susceptibility to, and severity of, rheumatoid arthritis. Lancet 2000;356:820-5 https://doi.org/10.1016/S0140-6736(00)02657-X
  40. Cavet J, Dickinson AM, Norden J, Taylor PR, Jackson GH, Middleton PG. Interferon-gamma and interleukin-6 gene polymorphisms associate with graft-versus-host disease in HLA-matched sibling bone marrow trans-plantation. Blood 2001;98:1594-600 https://doi.org/10.1182/blood.V98.5.1594
  41. Dabora SL, Roberts P, Nieto A, Perez R, Jozwiak S, Franz D, et al. Association between a high-expressing interferon-gamma allele and a lower frequency of kidney angiomyolipomas in TSC2 patients. Am J Hum Genet 2002;71:750-8 https://doi.org/10.1086/342718
  42. Masutani K, Miyake K, Nakashima H, Hirano T, Kubo M, Hirakawa M, et al. Impact of interferongamma and interleukin-4 gene polymorphisms on development and progression of IgA nephropathy in Japanese patients. Am J Kidney Dis 2003;41:371-9 https://doi.org/10.1053/ajkd.2003.50046
  43. Yamada N, Yamaya M, Okinaga S, Nakayama K, Sekizawa K, Shibahara S, et al. Microsatellite poly-morphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 2000;66:187-95 https://doi.org/10.1086/302729
  44. Benjafield AV, Wang XL, Morris BJ. Tumor necrosis factor receptor 2 gene (TNFRSF1B) in genetic basis of coronary artery disease. J Mol Med 2001;79:109-15 https://doi.org/10.1007/s001090000168
  45. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 1998;338:640-4 https://doi.org/10.1056/NEJM199803053381002
  46. Gebhardt F, Zanker KS, Brandt B. Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem 1999;274:13176-80 https://doi.org/10.1074/jbc.274.19.13176
  47. Parks WC, Shapiro SD. Matrix metalloproteinases in lung biology. Respir Res 2001;2:10-9 https://doi.org/10.1186/rr33
  48. Minematsu N, Nakamura H, Tateno H, Nakajima T, Yamaguchi K. Genetic polymorphism in matrix metalloproteinase-9 and pulmonary emphysema. Biochem Biophys Res Commun 2001;289:116-9 https://doi.org/10.1006/bbrc.2001.5936
  49. Sethi S. Bacterial infection and the pathogenesis of COPD. Chest 2000;117:286S-91S https://doi.org/10.1378/chest.117.5_suppl_1.286S
  50. Hass H, Morris JF, Samson S, Kilbourn JP, Kim PJ. Bacterial flora of the respiratory tract in chronic bronchitis: comparison of transtracheal, fiberbron-choscopic, and oropharyngeal sampling methods. Am Rev Respir Dis 1977;116:41-7
  51. Read RC, Wilson R, Rutman A, Lund V, Todd HC, Brain AP, et al. Interaction of nontypable Haemo-philus influenzae with human respiratory mucosa in vitro. J Infect Dis 1991;163:549-58 https://doi.org/10.1093/infdis/163.3.549
  52. Von Hertzen L, Alakarppa H, Koskinen R, Liippo K, Surcel HM, Leinonen M, et al. Chlamydia pneumoniae infection in patients with chronic obstructive pulmonary disease. Epidemiol Infect 1997;118:155-64 https://doi.org/10.1017/S095026889600725X
  53. Adler KB, Hendley DD, Davis GS. Bacteria associated with obstructive pulmonary disease elaborate extracellular products that stimulate mucin secretion by explants of guinea pig airways. Am J Pathol 1986;125:501-14
  54. Li JD. Exploitation of host epithelial signaling net- works by respiratory bacterial pathogens. J Pharmacol Sci 2003;91:1-7 https://doi.org/10.1254/jphs.91.1
  55. Netea MG, Kullberg BJ, Galama JM, Stalenhoef AF, Dinarello CA, Van der Meer JW. Non-LPS components of Chlamydia pneumoniae stimulate cytokine production through Toll-like receptor 2-dependent pathways. Eur J Immunol 2002;32:1188-95 https://doi.org/10.1002/1521-4141(200204)32:4<1188::AID-IMMU1188>3.0.CO;2-A
  56. Flo TH, Ryan L, Latz E, Takeuchi O, Monks BG, Lien E, et al. Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J Biol Chem 2002;277:35489-95 https://doi.org/10.1074/jbc.M201366200