Journal of Information Technology Applications and Management
/
제23권4호
/
pp.25-39
/
2016
Asset prices decline sharply and stock markets collapse when financial crisis happens. Recently we have encountered more frequent financial crises than ever. 1998 currency crisis and 2008 global financial crisis triggered academic researches on early warning systems that aim to detect the symptom of financial crisis in advance. This study proposes a risk recovery index for detection of good opportunities from financial market instability. We use SVM classifier algorithms to separate recovery period from unstable financial market data. Input variables are KOSPI index and V-KOSPI200 index. Our SVM algorithms show highly accurate forecasting results on testing data as well as training data. Risk recovery index is derived from our SVM-trained outputs. We develop a trading system that utilizes the suggested risk recovery index. The trading result records very high profit, that is, its annual return runs to 121%.
이 논문에서는 새로운 뉴스에 대해 선물시장이 현물시장보다 더 민감하게 반응하는지와 더 큰 가격변동폭을 보이는지를 검증한다. 뉴스에 대한 민감도는, 선물가격의 일간변동을 이론가격 변동에 관해 회귀시킨 식의 회귀계수에 의해 측정한다. 그리고 가격변동폭은 선물가격과 이론가격의 평균범위차이($\overline{RD}$), 평균고가차이($\overline{HD}$) 및 평균저가차이($\overline{LD}$)라는 세 가지 척도를 사용하여 측정한다. 이 논문에서 사용한 자료는 코스피200 지수선물시장의 개설 초기인 1996년 7월부터 최근의 2005년 12월말까지 최근월물과 차근원물의 선물가격과 이론가격이다. 민감도의 차이를 나타내는 $\hat{\beta}$는 1과 크게 유의한 차이를 보이지 않으므로 뉴스에 대한 두 시장의 민감도는 대체로 큰 차이가 있는 것으로 보이지 않는다. 그러나 최근기간(2002년 11월${\sim}$2005년 12월)에는 최근월물 및 차근월물 모두 1보다 큰 값을 보이고 있어 선물시장이 더 민감하게 반응하고 있다. 또 최근기간에 최근월물의 가격이 좋은 뉴스에 대해 현물시장보다 더 민감하게 반응하였다. 전체기간 및 하위기간의 ($\overline{RD}$)는 대체로 0과 유의한 차이를 갖지 않는다. 그러나 최근월물의 평균고가차이($\overline{HD}$)는 전체기간과 하위기간 모두에서 뚜렷하게 유의한 양의 값을 보이고 있다. 이것은 최근월물 선물가격의 좋은 뉴스에 대한 가격변동폭이 현물가격보다 더 크다는 것을 의미한다.
비대칭적정보(Asymmetric Information)에 근거한 정보가설에 의하면 (Ross, 1977; Myers and Majluf, 1984 등), 유상증자 공시가 기업가치에 미치는 효과는 결국 정보의 효율성에 달려있음을 강조하고 있다. 그럼에도 불구하고 지금까지 진행된 국내 유상증자 관련 연구들은 대부분 유상증자를 공시한 모든 기업을 하나의 샘플로 분석함으로서 모든 기업들의 정보효율성이 동일하다는 가정 하에서 연구가 이루어졌다. 본 연구는 이러한 문제인식 아래 2000년 1월 1일부터 2005년 12월 31일까지 유상증자를 공시했던 국내 122개 기업들을 정보효율성에 따라 분류하여 다양한 기간별로 유상증자 공시효과를 분석하였다. 유상증자를 공시한 모든 기업을 대상으로 분석한 결과는 대다수의 국내선행연구들과 마찬가지로 유상증자 공시시점의 주가상승과 공시직후의 주가하락으로 나타났다. 그러나 정보효율성 고려시 상대적으로 효율성이 높을 것으로 여겨지는 KOSPI200에 속하는 기업은 평균적으로 공시시점에 주가가 하락하고 공시직후엔 오히려 주가가 상승하는 모습을 보인 반면 기타의 KOSPI 기업의 경우는 전체기업 분석결과와 마찬가지로 공시시점에 주가상승과 공시직후의 주가하락을 보여 상반된 주가 움직임을 보이고 있는 것으로 나타났다. 유상증자공시가 장 단기적으로 주가에 악영향을 미친다는 미국시장에서의 연구들과는 달리 한국의 경우는 공시시점까지는 주가가 상승하고, 공시직 후 및 장기적으로는 주가가 하락한다는 상이한 연구결과가 주를 이루었는데 이러한 차를 그간 제도상의 차이로 설명하였다. 그러나 본 연구에서는 유상증자공시 기업을 정보효율성에 따라 개략적으로나마 구분함으로써 공시시점의 유상증자효과가 기존의 국내 연구들과 반대로, 국내시장보다 좀 더 효율적일 것으로 여겨지는 미국시장에서의 분석과 동일한 결과를 도출함으로써, 이러한 상이한 유상증자효과가 제도상의 차이뿐만 아니라 시장효율성의 차에 기인할 수 있음을 발견하였다.
Journal of the Korean Data and Information Science Society
/
제24권1호
/
pp.135-150
/
2013
본 논문에서는 옵션시장에서의 변동성 회귀특성과 러프집합 알고리즘을 이용한 옵션전략을 개발하는 것을 제안한다. 이제까지 주식, 선물 시장에서는 다양한 연구가 선행되어 왔지만, 옵션시장에 대한 연구는 활발하지 않았다. 특히 고빈도 자료를 이용한 옵션 트레이딩 전략은 미미한 수준이다. 본 연구의 목적은 두가지로 구성된다. 첫째는 내재변동성 고평가, 저평가 상태를 측정하여 괴리가 발생했을 때 이익을 향유하는 변동성 회귀 모델을 구축하는 것이다. 둘째는 옵션트레이딩전략에 러프집합 알고리즘을 사용하여 부정확한 진입신호를 필터링하여 더 안정적인 수익을 추구하는 것이다. 이 논문의 요점은 옵션시장이 기초자산, 변동성, 이자율과 같은 다양한 요소에 영향을 받기 때문에, 변동성을 제외한 요인 (기초자산의 방향성)을 선물로 헤지하면서, 변동성괴리에 따른 이익만을 향유하는 것이다.
주식시장이 효율적이라면 아무리 잘 고안된 투자전략이라도 시장의 평균 수익을 장기적으로 초과하는 것은 어렵다. 본 연구의 목적은 일부 시장 참여자들 사이에 회자되고 있는 호가잔량 정보효과를 이용하여 장기적으로 높은 수익을 얻을 수 있는지를 실증 분석하는데 있다. 이를 위하여 호가잔량정보를 이용하는 데이트레이딩 전략을 제안하고, 2001년부터 2018년까지의 코스피200 주가지수선물시장에 적용하여 과연 꾸준하게 돈을 벌 수 있는지를 분석하였다. 구체적으로 매수강도지수가 50% 이상이면 가격이 상승할 것으로 예상하고, 반대로 매수강도지수가 50% 미만이면 가격이 하락할 것으로 예상하여 각각 매수포지션과 매도포지션을 진입하여 수익성을 검증하였다. 실증분석 결과는 거래에 수반되는 거래비용을 제하고도 연 평균 71% 이상의 매우 높은 수익을 보여주고 있다. 발생된 수익 역시 분석 기간 전체에서 장기적, 안정적으로 나타나고 있음을 밝혔다. 유전자알고리즘을 이용하여 제안된 투자전략의 수익성을 개선함으로서, 호가잔량정보를 이용하는 투자자들에게 많은 도움이 될 것으로 기대된다.
Purpose - The purpose of this paper is to shed light on the importance of the slope and curvature of the volatility curve implied in option prices in the KOSPI 200 options index. A number of studies examine the implied volatility curve, however, these usually focus on cross-sectional characteristics such as the volatility smile. Contrary to previous studies, we focus on time-series characteristics; we investigate correlation dynamics among slope, curvature, and level of the implied volatility curve to capture market information embodied therein. Our study may provide useful implications for investors to utilize current market expectations in managing portfolios dynamically and efficiently. Research design, data, and methodology - For our empirical purpose, we gathered daily KOSPI200 index option prices executed at 2:50 pm in the Korean Exchange distribution market during the period of January 2, 2004 and January 31, 2012. In order to measure slope and curvature of the volatility curve, we use approximated delta distance; the slope is defined as the difference of implied volatilities between 15 delta call options and 15 delta put options; the curvature is defined as the difference between out-of-the-money (OTM) options and at-the-money (ATM) options. We use generalized method of moments (GMM) and the seemingly unrelated regression (SUR) method to verify correlations among level, slope, and curvature of the implied volatility curve with statistical support. Results - We find that slope as well as curvature is positively correlated with volatility level, implying that put option prices increase in a downward market. Further, we find that curvature and slope are positively correlated; however, the relation is weakened at deep moneyness. The results lead us to examine whether slope decreases monotonically as the delta increases, and it is verified with statistical significance that the deeper the moneyness, the lower the slope. It enables us to infer that when volatility surges above a certain level due to any tail risk, investors would rather take long positions in OTM call options, expecting market recovery in the near future. Conclusions - Our results are the evidence of the investor's increasing hedging demand for put options when downside market risks are expected. Adding to this, the slope and curvature of the volatility curve may provide important information regarding the timing of market recovery from a nosedive. For financial product distributors, using the dynamic relation among the three key indicators of the implied volatility curve might be helpful in enhancing profit and gaining trust and loyalty. However, it should be noted that our implications are limited since we do not provide rigorous evidence for the predictability power of volatility curves. Meaning, we need to verify whether the slope and curvature of the volatility curve have statistical significance in predicting the market trough. As one of the verifications, for instance, the performance of trading strategy based on information of slope and curvature could be tested. We reserve this for the future research.
고빈도 자료를 이용하여 한국과 중국에서 주가지수선물시장이 개설된 이후 현물 시장과의 동적관련성에 어떠한 특징적 차이점이 있는지에 대해 분석하였다. KOSPI 200의 경우 시차변수를 이용한 다중회귀분석에서 주가지수선물가격이 현물가격을 약 15분 정도 선행하는 것으로 나타나 주가지수선물시장이 현물시장에 대해 가격발견기능을 수행하는 것으로 나타났다. EGARCH 모형을 이용한 수익률 변동성의 선-후행관계 분석의 경우 강하지는 않지만 주가지수선물가격의 변동성이 현물가격의 변동성에 선행하는 것으로 나타났다. 한국의 경우 주가지수선물시장이 개설된 초기단계에서부터 다른 선진국의 경우와 비슷하게 선물시장과 현물시장 간에는 가격 및 가격변동성의 동적관련성이 존재하는 것으로 나타났다. CSI 300의 경우 한국과는 다른 특징적 차이를 보여주고 있다. 우선 현물시장의 가격이 주가지수선물시장의 가격에 선행하는 것으로 나타났다. 그 이유는 국내의 개인투자자와 외국인 투자자들이 주가지수선물거래에 참여하는 것이 엄격히 제한됨으로써 선물시장으로 유입되는 정보가 상대적으로 늦게 가격에 반영되어 선물시장의 가격발견기능을 약화시킨 결과로 판단된다. 변동성의 경우 현물시장과 주가지수선물시장 간에는 양방향의 상호의존성이 나타나고 있어 어느 한 시장의 일방적인 선행효과는 발생하지 않는 것으로 나타났다. 정리하면, 중국의 주가지수선물시장은 투자자들의 시장참여에 대한 여러 가지 제약으로 인해 충분한 정보전달 기능을 수행하지 못하는 것으로 나타났다.
최근 트레이딩 시스템에 대한 관심이 높아지면서, 인공지능을 이용한 지능형 트레이딩 시스템의 개발과 관련한 연구들이 활발하게 이루어지고 있다. 그러나 현재까지 소개된 트레이딩 시스템 관련 연구들은 트레이딩에 적용될 수 있는 다양한 변수들이 실무에서 활용되고 있음에도 불구하고, 주가지수에서 파생된 기술적 지표에만 과도하게 의존하는 경향이 있었다. 또한, 실제 수익창출에 초점이 맞추어진 트레이딩 시스템의 모형보다는 주가 혹은 주가지수의 등락에 대한 정확한 예측에 초점을 맞춰 모형을 개발하려고 하는 한계도 존재했다. 이에 본 연구에서는 기존 연구에서 주로 활용되어 온 기술적 지표 외에 현업에서 유용하게 활용되는 다양한 비가격 변수들을 시스템에 반영함으로서 예측 성과의 개선을 도모하는 동시에, Support Vector Machines 기반의 등락예측모형의 결과를 트레이딩 시스템의 매수, 매도, 혹은 유지의 신호로 해석할 수 있도록 설계된 새로운 형태의 지능형 트레이딩 시스템을 제안한다. 제안시스템의 유용성을 검증하기 위해, 본 연구에서는 2004년 5월부터 2009년 12월까지의 KOSPI200 주가지수에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안시스템이 수익률 관점에서 다른 비교모형들에 비해 더 우수한 성과를 도출함을 확인할 수 있었다.
주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.
Journal of the Korean Data and Information Science Society
/
제21권4호
/
pp.777-782
/
2010
We introduce some techniques to decompose the impulse (the unit sample) into several dilated pieces in the discrete time domain. From the decomposition of the impulse, we obtain localized moving averages. Thus we construct hybrid Bollinger bands that may give various strategies for stock traders. By simulations, we report that more than 94% of stock prices of companies in KOSPI 200 are inside this hybrid Bollinger band.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.