• 제목/요약/키워드: knock out mutant

검색결과 34건 처리시간 0.029초

산화적 스트레스에 대한 Bacillus subtilis의 thiol peroxidase 유전자의 생리적인 기능 (Physiological Roles of Bacillus subtilis thiol peroxidase gene in response to oxidative stress)

  • 김하근;김성진
    • 자연과학논문집
    • /
    • 제15권1호
    • /
    • pp.57-67
    • /
    • 2005
  • 산화적 스트레스에 대한 Bacillus subtilis의 thiol peroxidase 유전자의 생리적인 기능을 연구하기 위해 thiol peroxidase 유전자의 기능이 손상된 녹아웃 돌연변이주를 상동성 재조합에 의해 제조하였다. 호기적 조건에서 배양할 때 야생형과 녹아웃 돌연변이주 사이에는 성장속도에서 차이를 관찰할 수 없었다. 그러나 paraquat 처리할 때와는 달리 $H_2O_2$와 cumene hydroperoxide (CHP)에 의한 산화적 스트레스에 대해 역할을 하고 있음을 시사하는 결과이다.

  • PDF

Recent Progress in Biotechnology-based Gene Manipulating Systems to Produce Knock-In/Out Mouse Models

  • Lee, Woon Kyu;Park, Joong Jean;Cha, Seok Ho;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권5호
    • /
    • pp.745-753
    • /
    • 2008
  • Gene-manipulated mice were discovered for the first time about a quarter century ago. Since then, numerous sophisticated technologies have been developed and applied to answer key questions about the fundamental roles of the genes of interest. Functional genomics can be characterized into gain-of-function and loss-of-function, which are called transgenic and knock-out studies, respectively. To make transgenic mice, the most widely used technique is the microinjection of transgene-containing vectors into the embryonic pronucleus. However, there are critical drawbacks: namely position effects, integration of unknown copies of a foreign gene, and instability of the foreign DNA within the host genome. To overcome these problems, the ROSA26 locus was used for the knock-in site of a transgene. Usage of this locus is discussed for the gain of function study as well as for several brilliant approaches such as conditional/inducible transgenic system, reproducible/inducible knockdown system, specific cell ablation by Cre-mediated expression of DTA, Cre-ERTM mice as a useful tool for temporal gene regulation, MORE mice as a germ line delete and site specific recombinase system. Techniques to make null mutant mice include complicated steps: vector design and construction, colony selection of embryonic stem (ES) cells, production of chimera mice, confirmation of germ line transmission, and so forth. It is tedious and labor intensive work and difficult to approach. Thus, it is not readily accessible by most researchers. In order to overcome such limitations, technical breakthroughs such as reporter knock-in and gene knock-out system, production of homozygous mutant ES cells from a single targeting vector, and production of mutant mice from tetraploid embryos are developed. With these upcoming progresses, it is important to consider how we could develop these systems further and expand to other animal models such as pigs and monkeys that have more physiological similarities to humans.

Development of a toxA Gene Knock-out Mutant of Pasteurella multocida and Evaluation of its Protective Effects

  • Kim Tae-Jung;Lee Jae-Il;Lee Bong-Joo
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.320-326
    • /
    • 2006
  • Pasteurella multocida is an important veterinary and opportunistic human pathogen. In particular, strains of P. multocida serogroup D cause progressive atrophic rhinitis, and produce a potent, intracellular, mitogenic toxin known as P. multocida toxin (PMT), which is encoded by the toxA gene. To further investigate the toxigenic and pathogenic effects of PMT, a toxA-deleted mutant was developed by homologous gene recombination. When administrated to mice, the toxigenicity of the toxA mutant P. multocida was drastically reduced, suggesting that the PMT constributes the major part of the toxigenicity of P, multocida. Similar results were obtained in a subsequent experiment, while high mortalities were observed when toxA(+) P. multocida bacterial culture or culture Iysate were administrated. Mice immunized with toxA(-) P. multocida were not protected (none survived) following challenge with toxA(+) P. multocida or bacterial culture Iysate (toxin). These results suggest that the toxigenicity of P. multocida is mainly derived from PMT.

Effect of the pat, fk, stpk Gene Knock-out and mdh Gene Knock-in on Mannitol Production in Leuconostoc mesenteroides

  • Peng, Yu-Wei;Jin, Hong-Xing
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2009-2018
    • /
    • 2018
  • Leuconostoc mesenteroides can be used to produce mannitol by fermentation, but the mannitol productivity is not high. Therefore, in this study we modified the chromosome of Leuconostoc mesenteroides by genetic methods to obtain high-yield strains for mannitol production. In this study, gene knock-out strains and gene knock-in strains were constructed by a two-step homologous recombination method. The mannitol productivity of the pat gene (which encodes phosphate acetyltransferase) deletion strain (${\Delta}pat::amy$), the fk gene (which encodes fructokinase) deletion strain (${\Delta}fk::amy$) and the stpk gene (which encodes serine-threonine protein kinase) deletion strain (${\Delta}stpk::amy$) were all increased compared to the wild type, and the productivity of mannitol for each strain was 84.8%, 83.5% and 84.1%, respectively. The mannitol productivity of the mdh gene (which encodes mannitol dehydrogenase) knock-in strains (${\Delta}pat::mdh$, ${\Delta}fk::mdh$ and ${\Delta}stpk::mdh$) was increased to a higher level than that of the single-gene deletion strains, and the productivity of mannitol for each was 96.5%, 88% and 93.2%, respectively. The multi-mutant strain ${\Delta}dts{\Delta}ldh{\Delta}pat::mdh{\Delta}stpk::mdh{\Delta}fk::mdh$ had mannitol productivity of 97.3%. This work shows that multi-gene knock-out and gene knock-in strains have the greatest impact on mannitol production, with mannitol productivity of 97.3% and an increase of 24.7% over wild type. This study used the methods of gene knock-out and gene knock-in to genetically modify the chromosome of Leuconostoc mesenteroides. It is of great significance that we increased the ability of Leuconostoc mesenteroides to produce mannitol and revealed its broad development prospects.

Enhanced Homologous Recombination in Fusarium verticillioides by Disruption of FvKU70, a Gene Required for a Non-homologous End Joining Mechanism

  • Choi, Yoon-E.;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2008
  • Fusarium verticillioides (teleomorph Gibberella moniliformis) is associated with maize worldwide causing ear rot and stalk rot, and produces fumonisins, a group of mycotoxins detrimental to humans and animals. While research tools are available, our understanding of the molecular mechanisms associated with fungal virulence and fumonisin biosynthesis in F. verticillioides is still limited. One of the restraints that hampers F. verticillioides gene characterization is the fact that homologous recombination (HR) frequency is very low (<2%). Screening for a true gene knock-out mutant is a laborious process due to a high number of ectopic integrations. In this study, we generated a F. verticillioides mutant (SF41) deleted for FvKU70, a gene directly responsible for non-homologous end-joining mechanism, with the aim of improving HR frequency. Here, we demonstrate that FvKU70 deletion does not impact key Fverticillioides phenotypes, e.g., development, secondary metabolism, and virulence, while dramatically improving HR frequency. Significantly, we also confirmed that a high percentage (>85%) of the HR mutant strains harbor a desired mutation with no additional copy of the mutant allele inserted in the genome. We conclude that SF41 is suitable for use as a type strain when performing high-throughput gene function studies in F. verticillioides.

Ectopic Expression of Cenexin1 S796A Mutant in $ODF2^{+/-}$ Knockout Background Causes a Sperm Tail Development Defect

  • Lee, Kyung Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권4호
    • /
    • pp.363-370
    • /
    • 2012
  • The outer dense fiber 2 (ODF2) protein is an important component of sperm tail outer dense fiber and localizes at the centrosome. It has been reported that the RO072 ES cell derived homozygote knock out of ODF2 results in an embryonic lethal phenotype, and XL169 ES cell derived heterozygote knock out causes severe defects in sperm tail development. The ODF2s splicing variant, Cenexin1, possesses a C-terminal extension, and the phosphorylation of serine 796 residue in an extended C-terminal is responsible for Plk1 binding. Cenexin1 assembles ninein and causes ciliogenesis in early stages of the cell cycle in a Plk1-independent manner. Alternatively, in the late stages of the cell cycle, G2/M phase, Cenexin1 binds to Plk1 and results in proper mitotic progression. In this study, to identify the in vivo function of Plk1 binding to phosphorylated Cenexin1 S796 residue, and to understand the in vivo functional differences between ODF2 and Cenexin1, we generated ODF2/Cenexin1 S796A/Cenexin1 WT expressing transgenic mice in a RO072 ES cell derived $ODF2^{+/-}$ knock out background. We observed a severe defect of sperm tail development by ectopic expression of Cenexin1 S796A mutant and no phenotypic differences between the ectopic expression of ODF2/Cenexin1 WT in $ODF2^{+/-}$ background and in normal wild type mice.

Streptomyces avermitilis에서 olmA5 Gene의 Knock-out에 의한 Oligomycin 합성 억제 (Inhibition of Oligomycin Biosynthesis by olmA5 Gene Knock-out in Streptomyces avermitilis)

  • 강현우;유연우
    • KSBB Journal
    • /
    • 제24권3호
    • /
    • pp.279-286
    • /
    • 2009
  • 방선균은 다양한 생리활성 물질을 이차대사산물로 생산하는 산업적으로 매우 유용한 미생물이다. 이에 따라 많은 연구진들이 방선균에 대한 분자생물학적 연구와 산업적 이용에 대한 연구들을 수행하고 있다. 방선균 중에서도 S. avermitilis는 강력한 구충효과가 있는 avermectin을 생산하지만, 또한 포유동물 세포의 미토콘드리아에서 산화적 인산화반응을 억제하는 oligomycin도 함께 생성된다. 따라서 S. avermitilis에서 oligomycin의 생성을 제거시키기 위하여 oligomycin synthetase gene을 disruption 시키기 위한 연구를 수행하였다. 이를 위하여 S. avermitilis로부터 cloning 한 oligomycin synthetase gene (olmA5)의 중앙부분에 apramycin resistance gene을 끼워 넣어 integration vector로 구축한 후에 S. avermitilis의 chromosomal DNA와의 homologous recombination에 의하여 olmA5 gene의 disruption을 유도하였다. Disruption mutants (olmA5::apra)는 PCR을 통해 olmA5 gene의 위치에 apramycin resistance gene이 존재하는 것으로 확인하였고, 또한 HPLC 분석을 통해 oligomycin 생합성이 완전히 제거된 것임을 확인하였다. 그러나 disruption mutant (olmA5::apra)를 이용하여 avermectin 만을 생산할 수 있었으나, avermectin의 생산량에는 거의 변화가 없었다. 이러한 mutants는 산업적으로 avermectin을 생산하기 위한 균주 개량의 훌륭한 source가 될 수 있을 것이다.

Structure and Expression of OsUBP6, an Ubiquitin-Specific Protease 6 Homolog in Rice (Oryza sativa L.)

  • Moon, Yea Kyung;Hong, Jong-Pil;Cho, Young-Chan;Yang, Sae-Jun;An, Gynheung;Kim, Woo Taek
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.463-472
    • /
    • 2009
  • Although the possible cellular roles of several ubiquitin-specific proteases (UBPs) were identified in Arabidopsis, almost nothing is known about UBP homologs in rice, a monocot model plant. In this report, we searched the rice genome database (http://signal.salk.edu/cgi-bin/RiceGE) and identified 21 putative UBP family members (OsUBPs) in the rice genome. These OsUBP genes each contain a ubiquitin carboxyl-terminal hydrolase (UCH) domain with highly conserved Cys and His boxes and were subdivided into 9 groups based on their sequence identities and domain structures. RT-PCR analysis indicated that rice OsUBP genes are expressed at varying degrees in different rice tissues. We isolated a full-length cDNA clone for OsUBP6, which possesses not only a UCH domain, but also an N-terminal ubiquitin motif. Bacterially expressed OsUBP6 was capable of dismantling K48-linked tetra-ubiquitin chains in vitro. Quantitative real-time RT-PCR indicated that OsUBP6 is constitutively expressed in different tissues of rice plants. An in vivo targeting experiment showed that OsUBP6 is predominantly localized to the nucleus in onion epidermal cells. We also examined how knock-out of OsUBP6 affects developmental growth of rice plants. Although homozygous T3 osubp6 T-DNA insertion mutant seedlings displayed slower growth relative to wild type seedlings, mature mutant plants appeared to be normal. These results raise the possibility that loss of OsUBP6 is functionally compensated for by an as-yet unknown OsUBP homolog during later stages of development in rice plants.

재조합 대장균에서 fadB 유사효소의 Polyhydroxyalkanoates 합성에 미치는 역할의 규명 (In Vivo Analysis of fadB Homologous Enzymes Involved in Biosynthesis of Polyhydroxyalkanoates in Recombinant Escherichia coli)

  • 최종일;박시재;이상엽
    • KSBB Journal
    • /
    • 제19권4호
    • /
    • pp.331-334
    • /
    • 2004
  • 재조합 E. coli를 이용한 MCL-PHA의 생산에서 fatty acid pathway로부터 PHA 생합성 전구체 물질들이 만들어진다는 사실과 함께 이에 관여하는 enzymes이 밝혀지고 있다. 본 논문에서는 protein homology search로부터 탐색된 paaG와 ydbU genes의 PHA 생합성에서의 역할을 확인하기 위하여 paaG와 ydbU gene이 각각 knock-out된 mutant E. coli strains 를 제작하였다. 제작된 mutant E. coli들은 모균주들보다 낮은 PHA 농도와 함량을 가졌으며, 이러한 결과들로부터 paaG와 ydbU는 fatty acid pathway에서 PHA synthesis의 전구체 물질들을 공급한다는 사실을 확인하였다. 또한, 새로운 FadB homologous enzyme YgfG를 탐색하였으며, ygfG gene이 overexpression된 균주와 ygfG mutant를 제작하여 PHA 합성을 실험한 결과 ygfG도 paaG와 ydbU와 유사한 역할을 한다는 사실을 밝혔다. 이러한 연구결과들은 E. coli에서의 MCL-PHA 단량체들의 합성 경로를 확인하여 효과적인 PHA 생산 균주를 제작할 수 있게 할 것이다.

Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris

  • Huan huan Yan;Yi tong Shang;Li hong Wang;Xue qin Tian;Van-Tuan Tran;Li hua Yao;Bin Zeng;Zhi hong Hu
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1178-1187
    • /
    • 2024
  • Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.