DOI QR코드

DOI QR Code

Enhanced Homologous Recombination in Fusarium verticillioides by Disruption of FvKU70, a Gene Required for a Non-homologous End Joining Mechanism

  • Choi, Yoon-E. (Department of Plant Pathology and Microbiology, Program for the Biology of Filamentous Fungi, Texas A&M University, College Station) ;
  • Shim, Won-Bo (Department of Plant Pathology and Microbiology, Program for the Biology of Filamentous Fungi, Texas A&M University, College Station)
  • Published : 2008.03.31

Abstract

Fusarium verticillioides (teleomorph Gibberella moniliformis) is associated with maize worldwide causing ear rot and stalk rot, and produces fumonisins, a group of mycotoxins detrimental to humans and animals. While research tools are available, our understanding of the molecular mechanisms associated with fungal virulence and fumonisin biosynthesis in F. verticillioides is still limited. One of the restraints that hampers F. verticillioides gene characterization is the fact that homologous recombination (HR) frequency is very low (<2%). Screening for a true gene knock-out mutant is a laborious process due to a high number of ectopic integrations. In this study, we generated a F. verticillioides mutant (SF41) deleted for FvKU70, a gene directly responsible for non-homologous end-joining mechanism, with the aim of improving HR frequency. Here, we demonstrate that FvKU70 deletion does not impact key Fverticillioides phenotypes, e.g., development, secondary metabolism, and virulence, while dramatically improving HR frequency. Significantly, we also confirmed that a high percentage (>85%) of the HR mutant strains harbor a desired mutation with no additional copy of the mutant allele inserted in the genome. We conclude that SF41 is suitable for use as a type strain when performing high-throughput gene function studies in F. verticillioides.

Keywords

References

  1. Choi, Y. E. and Shim, W. B. 2008a. Functional characterization of Fusarium verticillioides CPP1, a gene encoding putative protein phosphatase 2A catalytic subunit. Microbiology 154:326-336. https://doi.org/10.1099/mic.0.2007/011411-0
  2. Choi, Y. E. and Shim, W. B. 2008b. Identification of genes associated with fumonisin biosynthesis in Fusarium verticillioides via proteomics and quantitative real-time PCR. J. Microbiol. Biotechnol. 18:(In Press).
  3. Gelderblom, W. C. A., Jaskiewicz, K., Marasas, W. F. O., Thiel, P. G., Horak, R. M., Vleggaar, R. and Kriek, N. P. J. 1988. Fumonisins - novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 54:1806-1811.
  4. Goins, C. L., Gerik, K. J. and Lodge, J. K. 2006. Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans: Absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes. Fungal Genet. Biol. 43:531-544. https://doi.org/10.1016/j.fgb.2006.02.007
  5. Haarmann, T., Lorenz, N. and Tudzynski, P. 2008. Use of a nonhomologous end joining deficient strain (ku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet. Biol. 45:35-44. https://doi.org/10.1016/j.fgb.2007.04.008
  6. Hefferin, M. L. and Tomkinson, A. E. 2005. Mechanism of DNA double-stranded break repair by non-homologous end joining. DNA Repair 4:639-648. https://doi.org/10.1016/j.dnarep.2004.12.005
  7. Iwabuchi, K., Hashimoto, M., Matsui, T., Kurihara, T., Shimizu, H., Adachi, N., Ishiai, M., Yamamoto, K.-I., Tauchi, H., Takata, M., Koyama, H. and Date, T. 2006. 53BP1 contributes to survival of cells irradiated with X-ray during G1 without Ku70 or Artemis. Genes Cells 11:935-948. https://doi.org/10.1111/j.1365-2443.2006.00989.x
  8. Jurgenson, J. E., Zeller, K. A. and Leslie, J. F. 2002. Expanded genetic map of Gibberella moniliformis (Fusarium verticillioides). Appl. Environ. Microbiol. 68:1972-1979. https://doi.org/10.1128/AEM.68.4.1972-1979.2002
  9. Krappmann, S., Sasse, C. and Braus, G. H. 2006. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetics background. Eukaryot. Cell 5:212-215. https://doi.org/10.1128/EC.5.1.212-215.2006
  10. Marasas, W. F. O. 2001. Discovery and occurrence of the fumonisins: A historical perspective. Environ. Health Perspect. 109: 239-243. https://doi.org/10.1289/ehp.01109s2239
  11. Meyer, V., Arentshorst, M., El-Ghezal, A., Drews, A-C., Kooistra, R., van den Hondel, C. A. M. J. J. and Ram, A. F. J. 2007. Highly efficient gene targeting in the Aspergillus niger kusA mutant. J. Biotechnol. 128:770-775. https://doi.org/10.1016/j.jbiotec.2006.12.021
  12. Minorsky, P. V. 2002. The hot and the classic. Plant Physiol. 129:929-930. https://doi.org/10.1104/pp.900040
  13. Missmer, S. A., Suarez, L., Felkner, M., Wang, E., Merrill Jr, A. H., Rothman, K. J. and Hendricks, K. A. 2006. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico Border. Environ. Health Perspect. 114:237- 241. https://doi.org/10.1289/ehp.8221
  14. Nayak, T., Szewczyk, E., Oakley, C. E., Osmani, A., Ukil, L., Murray, S. L., Hynes, M. J., Osmani, S. A. and Oakley, B. R. 2006. A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557-1566. https://doi.org/10.1534/genetics.105.052563
  15. Ninomiya, Y., Suzuki, K., Ishii, C. and Inoue, H. 2004. Highly efficient gene replacements in Neurospora strains deficients for nonhomologous end-joining. Proc. Natl. Acad. Sci. USA 101:12248-12253. https://doi.org/10.1073/pnas.0402780101
  16. Pirttila, A. M., McIntyre, L. M., Payne, G. A. and Woloshuk, C. P. 2004. Expression profile analysis of wild-type and fcc1 mutant strains of Fusarium verticillioides during fumonisin biosynthesis. Fungal Genet. Biol. 41:647-656. https://doi.org/10.1016/j.fgb.2004.02.001
  17. Proctor, R. H., Desjardins, A. E., Plattner, R. D. and Hohn, T. M. 1999. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet. Biol. 27:100-112. https://doi.org/10.1006/fgbi.1999.1141
  18. Sagaram, U. S., Butchko, R. A. E. and Shim, W. B. 2006. The putative monomeric G-protein GBP1 is negatively associated with fumonisin $B_1 $ production in Fusarium verticillioides. Mol. Plant Pathol. 7:381-389. https://doi.org/10.1111/j.1364-3703.2006.00347.x
  19. Sagaram, U. S., Kolomiets, M. V. and Shim, W. B. 2006. Regulation of fumonisin biosynthesis in Fusarium verticillioidesmaize system. Plant Pathol. J. 22:203-210. https://doi.org/10.5423/PPJ.2006.22.3.203
  20. Sagaram, U. S., Shaw, B. D. and Shim, W. B. 2007. Fusarium verticillioides GAP1, a gene encoding a putative glycolipidanchored surface protein, participates in conidiation and cell wall structure but not virulence. Microbiology 153:2850-2861. https://doi.org/10.1099/mic.0.2007/007708-0
  21. Sagaram, U. S. and Shim, W. B. 2007. Fusarium verticillioides GBB1, a gene encoding heterotrimeric G protein $\beta$ subunit, is associated with fumonisin $B_1 $ biosynthesis and hyphal development but not with fungal virulence. Mol. Plant Pathol. 8: 375-384. https://doi.org/10.1111/j.1364-3703.2007.00398.x
  22. Shim, W. B. and Woloshuk, C. P. 2001. Regulation of fumonisin B biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl. Environ. Microbiol. 67:1607-1612. https://doi.org/10.1128/AEM.67.4.1607-1612.2001
  23. Shim, W. B., Sagaram, U. S., Choi, Y. E., So, J., Wilkinson, H. H. and Lee, Y. W. 2006. FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. Mol. Plant-Microbe Interact. 19:725-733. https://doi.org/10.1094/MPMI-19-0725
  24. Ueno, K., Uno, J., Nakayama, H., Sasamoto, K., Mikami, Y. and Chibana, H. 2007. Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata. Eukaryot. Cell 6:1239-1247. https://doi.org/10.1128/EC.00414-06
  25. Villalba, F., Collemare, J., Landraud, P., Lambou, K., Brozek, V., Cirer, B., Morin, D., Bruel, C., Beffa, R. and Lebrun., M. 2008. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet. Biol. 45:68-75. https://doi.org/10.1016/j.fgb.2007.06.006
  26. Weld, R. J., Plummer, K. M., Carpenter, M. A. and Ridgway, H. J. 2006. Approaches to functional genomics in filamentous fungi. Cell Res. 16:31-44. https://doi.org/10.1038/sj.cr.7310006
  27. White, D. G. 1999. Compendium of Corn Disease. 3rd ed. APS Press, St. Paul, MN, USA, 44-49 pp.
  28. Xu, J.-R. and Leslie, J. F. 1996. A genetic map of Gibberella fujikuroi mating population A (Fusarium moniliforme). Genetics 143:175-189.
  29. Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Domínguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001

Cited by

  1. Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels vol.12, pp.5, 2011, https://doi.org/10.1111/j.1364-3703.2010.00686.x
  2. Enhanced gene replacement frequency in KU70 disruption strain of Stagonospora nodorum vol.167, pp.3, 2012, https://doi.org/10.1016/j.micres.2011.05.004
  3. Protein phosphatase 2A regulatory subunits perform distinct functional roles in the maize pathogenFusarium verticillioides vol.14, pp.5, 2013, https://doi.org/10.1111/mpp.12023
  4. ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7 vol.97, pp.11, 2013, https://doi.org/10.1007/s00253-013-4851-8