Browse > Article
http://dx.doi.org/10.4014/jmb.1805.05066

Effect of the pat, fk, stpk Gene Knock-out and mdh Gene Knock-in on Mannitol Production in Leuconostoc mesenteroides  

Peng, Yu-Wei (School of Chemical Engineering and Technology, Hebei University of Technology)
Jin, Hong-Xing (School of Chemical Engineering and Technology, Hebei University of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.12, 2018 , pp. 2009-2018 More about this Journal
Abstract
Leuconostoc mesenteroides can be used to produce mannitol by fermentation, but the mannitol productivity is not high. Therefore, in this study we modified the chromosome of Leuconostoc mesenteroides by genetic methods to obtain high-yield strains for mannitol production. In this study, gene knock-out strains and gene knock-in strains were constructed by a two-step homologous recombination method. The mannitol productivity of the pat gene (which encodes phosphate acetyltransferase) deletion strain (${\Delta}pat::amy$), the fk gene (which encodes fructokinase) deletion strain (${\Delta}fk::amy$) and the stpk gene (which encodes serine-threonine protein kinase) deletion strain (${\Delta}stpk::amy$) were all increased compared to the wild type, and the productivity of mannitol for each strain was 84.8%, 83.5% and 84.1%, respectively. The mannitol productivity of the mdh gene (which encodes mannitol dehydrogenase) knock-in strains (${\Delta}pat::mdh$, ${\Delta}fk::mdh$ and ${\Delta}stpk::mdh$) was increased to a higher level than that of the single-gene deletion strains, and the productivity of mannitol for each was 96.5%, 88% and 93.2%, respectively. The multi-mutant strain ${\Delta}dts{\Delta}ldh{\Delta}pat::mdh{\Delta}stpk::mdh{\Delta}fk::mdh$ had mannitol productivity of 97.3%. This work shows that multi-gene knock-out and gene knock-in strains have the greatest impact on mannitol production, with mannitol productivity of 97.3% and an increase of 24.7% over wild type. This study used the methods of gene knock-out and gene knock-in to genetically modify the chromosome of Leuconostoc mesenteroides. It is of great significance that we increased the ability of Leuconostoc mesenteroides to produce mannitol and revealed its broad development prospects.
Keywords
Leuconostoc mesenteroides; mannitol productivity; gene knock-out; gene knock-in;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tomaszewska L, Rywinska A, Gladkowski W. 2012. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J. Ind. Microbiol. Biotechnol. 39: 1333-1343.   DOI
2 Von Weymarn N, Hujanen M, Leisola M. 2002. Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochem. 37: 1207-1213.   DOI
3 Chung CH. 2006. Production of glucooligosaccharides and mannitol from Leuconostoc mesenteroides B-742 fermentation and its separation from byproducts. J. Microbiol. Biotechnol. 16: 325-329.
4 Saha BC, Racine FM. 2008. Production of mannitol by lactic acid bacteria: a review. pp. 391-404. In Ching T Hou, Jei-Fu Shaw (eds.), Biocatalysis and Bioenergy. Wiley, Hoboken.
5 Song SH, Vieille C. 2009. Recent advances in the biological production of mannitol. Appl. Microbiol. Biotechnol. 84: 55-62.   DOI
6 Grobben GJ, Peters SW, Wisselink HW, Weusthuis RA, Hoefnagel MH, Hugenholtz J, et al. 2001. Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Appl. Environ. Microbiol. 67: 2867-2870.   DOI
7 Saha BC. 2006. A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693. Appl. Microbiol. Biotechnol. 72: 676-680.   DOI
8 Fontes CP, Honorato TL, Rabelo MC, Rodrigues S. 2009. Kinetic study of mannitol production using cashew apple juice as substrate. Bioprocess Biosyst. Eng. 32: 493-499.   DOI
9 Zhang Z, Cheng WY, Ju XY, Jin HX. 2015. The effect of dextransucrase gene inactivation on mannitol production by Leuconostoc mesenteroides. Indian J. Microbiol. 55: 35-40.   DOI
10 Yue M, Cao H, Zhang J, Li S, Meng Y, Chen W, et al. 2013. Improvement of mannitol production by Lactobacillus brevis mutant 3-A5 based on dual-stage pH control and fed-batch fermentations. World J. Microbiol. Biotechnol. 29: 1923-1930.   DOI
11 Tian Y-F, Liu X-L, Cheng W-Y, Jin H-X. 2016. Study on application of ${\alpha}$-amylase gene in the gene expression of Leuconostoc mesenteroides. Sci. Technol. Food Ind. 37: 203-207.
12 Vingataramin L, Frost EH. 2015. A single protocol for extraction of gDNA from bacteria and yeast. Biotechniques 58: 120-125.
13 Ganzle MG. 2015. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2: 106-117.   DOI
14 Guo X, Cao C, Wang Y, Li C, Wu M, Chen Y, et al. 2014. Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2, 3-butanediol production in Klebsiella pneumoniae strain. Biotechnol. Biofuels 7: 44.   DOI
15 Helanto M, Aarnikunnas J, von Weymarn N, Airaksinen U, Palva A, Leisola M. 2005. Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides. J. Biotechnol. 116: 283-294.   DOI
16 Stancik IA, Sestak MS, Ji B, Axelson-Fisk M, Franjevic D, Jers C, et al. 2018. Serine/Threonine protein kinases from bacteria, archaea and eukarya share a common evolutionary origin deeply rooted in the tree of life. J. Mol. Biol. 430: 27-32.   DOI
17 Yan M-H, Wu Z-J. 2016. Proteomic analysis of EPS synthesis of Leuconostoc mesenteroides. Sci. Food Technol. Ind. 37: 158-160.
18 Chambel L, Chelo IM, Ze-Ze L, Pedro LG, Santos MA, Tenreiro R. 2006. Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int. J. Syst. Evol. Microbiol. 56: 1375-1381.   DOI
19 Vidal RF, Martinez A, Moulis C, Escalier P, Morel S, Remaud-Simeon M, et al. 2011. A novel dextransucrase is produced by Leuconostoc citreum strain B/110-1-2: an isolate used for the industrial production of dextran and dextran derivatives. J. Ind. Microbiol. Biotechnol. 38: 1499-1506.   DOI
20 Liu X , Jia W, An Y, C heng K, Wang M, Yang S, et al. 2015. Screening, gene cloning, and characterizations of an acidstable ${\alpha}$-amylase. J. Microbiol. Biotechnol. 25: 828-836.   DOI
21 Giraud E, Cuny G. 1997. Molecular characterization of the ${\alpha}$-amylase genes of Lactobacillus plantarum A6 and Lactobacillus amylovorus reveals an unusual 3' end structure with direct tandem repeats and suggests a common evolutionary origin. Gene. 198: 149-157.   DOI
22 Wang Y. 2006. The production of mannitol by biotechnics. Mod. Food Sci. Technol. 22: 291-293.
23 Papagianni M, Legisa M. 2014. Increased mannitol production in Lactobacillus reuteri ATCC 55730 production strain with a modified 6-phosphofructo-1-kinase. J. Biotechnol 181: 20-26.   DOI
24 Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ. 2002. Mannitol production by lactic acid bacteria: a review. Int. Dairy J. 12: 151-161.   DOI
25 Makkee M, Kieboom APG, Van Bekkum H. 1985. Production methods of D-mannitol. Starch-Starke 37: 136-141.   DOI
26 Dai Y, Meng Q, Mu W, Zhang T. 2017. Recent advances in the applications and biotechnological production of mannitol. J. Funct. Foods 36: 404-409.   DOI
27 Saha BC, Racine FM. 2011. Biotechnological production of mannitol and its applications. Appl. Microbiol. Biotechnol. 89: 879-891.   DOI
28 Carvalheiro F, Moniz P, Duarte LC, Esteves MP & Girio FM. 2011. Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J. Ind. Microbiol. Biotechnol. 38: 221-227.   DOI
29 Ghoreishi SM, Shahrestani RG. 2009. Innovative strategies for engineering mannitol production. Trends Food Sci. Technol. 20: 263-270.   DOI
30 Slatner M, Nagl G, Haltrich D, Kulbe KD, & Nidetzky B. 1998. Enzymatic production of pure D-mannitol at high productivity. Biocatal. Biotransform. 16: 351-363.   DOI