Browse > Article
http://dx.doi.org/10.5713/ajas.2008.r.04

Recent Progress in Biotechnology-based Gene Manipulating Systems to Produce Knock-In/Out Mouse Models  

Lee, Woon Kyu (Laboratory of Animal Medicine, Medical Research Center, Yonsei University Health System)
Park, Joong Jean (Department of Physiology, College of Medicine, Korea University)
Cha, Seok Ho (Department of Pharmacology and Toxicology, and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University)
Yun, Cheol-Heui (Graduate School of Agriculture Biotechnology, College of Agriculture and Life Science, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.21, no.5, 2008 , pp. 745-753 More about this Journal
Abstract
Gene-manipulated mice were discovered for the first time about a quarter century ago. Since then, numerous sophisticated technologies have been developed and applied to answer key questions about the fundamental roles of the genes of interest. Functional genomics can be characterized into gain-of-function and loss-of-function, which are called transgenic and knock-out studies, respectively. To make transgenic mice, the most widely used technique is the microinjection of transgene-containing vectors into the embryonic pronucleus. However, there are critical drawbacks: namely position effects, integration of unknown copies of a foreign gene, and instability of the foreign DNA within the host genome. To overcome these problems, the ROSA26 locus was used for the knock-in site of a transgene. Usage of this locus is discussed for the gain of function study as well as for several brilliant approaches such as conditional/inducible transgenic system, reproducible/inducible knockdown system, specific cell ablation by Cre-mediated expression of DTA, Cre-ERTM mice as a useful tool for temporal gene regulation, MORE mice as a germ line delete and site specific recombinase system. Techniques to make null mutant mice include complicated steps: vector design and construction, colony selection of embryonic stem (ES) cells, production of chimera mice, confirmation of germ line transmission, and so forth. It is tedious and labor intensive work and difficult to approach. Thus, it is not readily accessible by most researchers. In order to overcome such limitations, technical breakthroughs such as reporter knock-in and gene knock-out system, production of homozygous mutant ES cells from a single targeting vector, and production of mutant mice from tetraploid embryos are developed. With these upcoming progresses, it is important to consider how we could develop these systems further and expand to other animal models such as pigs and monkeys that have more physiological similarities to humans.
Keywords
Transgenic; Knock In/Out; ROSA26; Tetraploid; ES Cells; Gene Manipulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Belteki, G., J. Haigh, N. Kabacs, K. Haigh, K. Sison, F. Costantini, J. Whitsett, S. E. Quaggin and A. Nagy. 2005. Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 33:e51.   DOI   ScienceOn
2 Austin, C. P., J. F. Battey, A. Bradley, M. Bucan, M. Capecchi and F. S. Collins. 2004. The knockout mouse project. Nat. Genet. 36:921-924.   DOI   ScienceOn
3 Belteki, G., M. Gertsenstein, D. W. Ow and A. Nagy. 2003. Sitespecific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat. Biotech. 21:321-324.   DOI   ScienceOn
4 Branda, C. S. and S. M. Dymecki. 2004. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6:7-28.   DOI   ScienceOn
5 Capecchi, M. R. 2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6:507-512.
6 Hudziak, R. M., F. A. Laski, U. L. RajBhandary, P. A. Sharp and M. R. Capecchi. 1982. Establishment of mammalian cell lines containing multiple nonsense mutations and functional suppressor tRNA genes. Cell 31:137-146.   DOI   ScienceOn
7 Mao, A., B. Barrow, J. McMahon, J. Vaughan and A. P. McMahon. 2005. An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo. Nucleic Acids Res. 33:e155.   DOI   ScienceOn
8 Snow, M. H. 1975. Embryonic development of tetraploid mice during the second half of gestation. J. Embryol. Exp. Morph. 35:81-86.
9 Yu, J. and A. P. McMahon. 2006. Reproducible and inducible knockdown of gene expression in mice. Genesis 44:252-261.   DOI   ScienceOn
10 George, S. H. L., M. Gertsenstein, K. Vintersten, E. Korets-Smith, J. Murphy, M. E. Stevens, J. J. Haigh and A. Nagy. 2007. Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc. Natl. Acad. Sci. USA 104:4455-4460.   DOI   ScienceOn
11 Gorivodsky, M. and P. Lonai. 2003. Novel roles of Fgfr2 in AER differentiation and positioning of the dorsoventral limb interface. Development 130:5471-5479.   DOI   ScienceOn
12 Grippo, P. J., P. S. Nowlin, R. D. Cassaday and E. P. Sandgren. 2002. Cell-specific transgene expression from a widely transcribed promoter using Cre/lox in mice. Genesis 32:277-286.   DOI   ScienceOn
13 Deng, C., M. Bedford, C. Li, X. Xu, X. Yang, J. Dunmore and P. Leder. 1997. Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev. Biol. 186:42-54.
14 Gu, X., C. Li, W. Wei, V. Lo, S. Gong, S-H. Li, T. Iwasato, S. Itohara, X-J. Li, I. Mody, N. Heintz and X. W. Yang. 2005. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntington contribute to cortical pathogenesis in HD mice. Neuron 46:433-444.   DOI   ScienceOn
15 Collins, F. S., J. Rossant and W. Wurst. 2007. A Mouse for all reasons. Cell 128:9-13.   DOI   ScienceOn
16 Chrenek, P., L. Chrastinova, K. Kirchnerova, A. V. Makarevich and V. Foltys. 2007. The yield and composition of milk from transgenic rabbits. Asian-Aust. J. Anim. Sci. 20:482-486.   과학기술학회마을   DOI
17 Evans, M. J. and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156.   DOI   ScienceOn
18 Raymond, C. S. and P. Soriano. 2007. High-efficiency FLP and $\phi$C31 site-specific recombination in mammalian cells. PLoS ONE 2:e162.   DOI   ScienceOn
19 Riele, T., E. R. Maandag, A. Clarke, M. Hooper and A. Berns. 1990. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348:649-651.   DOI   ScienceOn
20 Hitz, C., W. Wurst and R. Kuhn. 2007. Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference. Nucleic Acids Res. 35:e90.   DOI
21 Kisseberth, W. C., N. T. Brettingen, J. K. Lohse and E. P. Sandgren. 1999. Ubiquitous expression of marker transgenes in mice and rats. Dev. Biol. 214:128-138.   DOI   ScienceOn
22 Hwang, S., E. J. Choi, S. You, Y. J. Choi, K. S. Min and J. T. Yoon. 2006. Development of bovine nuclear transfer embryos using life-span extended donor cells transfected with foreign gene. Asian-Aust. J. Anim. Sci. 19:1574-1579.   과학기술학회마을   DOI
23 Ivanova, A., M. Signore, N. Caro, N. D. E. Greene, A. J. Copp and J. P. Martinez-Barbera. 2005. In vivo genetic ablation by Cremediated expression of dphtheria toxin fragment A. Genesis 43:129-135.   DOI   ScienceOn
24 Jeong, J., J. Mao, T. Tenzen, A. H. Kottmann and A. P. McMahon. 2006. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordial. Genes Dev. 18:937-951.   DOI   ScienceOn
25 Koller, B. H. and O. Smithies. 1989. Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc. Natl. Acad. Sci. USA. 86:8932-8935.   DOI
26 Sauer, B. and N. Henderson. 1988. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA. 85:5166-5170.   DOI
27 Snow, M. H. 1973. Tetraploid mouse embryos produced by cytochalasin B during cleavage. Nature 244:513-515.   DOI   ScienceOn
28 Soriano, P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21:70-71.   DOI   ScienceOn
29 Lakso, M., J. G. Pichel, J. R. Gorman, B. Sauer, Y. Okamoto, E. Lee, F. W. Alt and H. Westphal. 1996. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA. 93:5860-5865.   DOI
30 Srinivas, S., T. Watanabe, C-S. Lin, C. M. William, Y. Tanabe, T. M. Jessell and F. Costantini. 2001. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1:4.   DOI
31 Mortensen, R. M., D. A. Conner, S. Chao, A. A. T. Geisterfer-Lowrance and J. G. Seidman. 1992. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12:2391-2395.   DOI
32 Murtaugh, L. C., B. Z. Stanger, K. M. Kwan and D. A. Melton. 2003. Notch signaling controls multiple steps of pancreatin differentiation. Proc. Natl. Acad. Sci. USA. 100:14920-14925.   DOI   ScienceOn
33 O'Gorman, S., D. T. Fox and G. M. Wahl. 1991. Recombinasemediated gene activation and site-specific integration in mammalian cells. Sci. 251:1351-1355.   DOI
34 Odorfer, Ko. I., N. J. Unger, K. Weber, E. P. Sandgren and R. G. Erben. 2007. Marker tolerant, immunocompetent animal as a new tool for regenerative medicine and long-term cell tracking. BMC Biotech. 7:30.   DOI
35 Hayashi, S. and A. P. McMahon. 2002. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244:305-318.   DOI   ScienceOn
36 Wang, W., M. Warren and A. Bradley. 2007. Induced mitotic recombination of p53 in vivo. Proc. Natl. Acad. Sci. USA. 104:4501-4505.   DOI   ScienceOn
37 Zambrowicz, B. P., A. Imanoto, S. Fiering, L. A. Herzenberg, W. G. Kerr and P. Soriano. 1997. Disruption of overlapping transcripts in the ROSA $\beta$geo26 gene trap strain leads to widespread expression of $\beta$-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA. 94:3789-3794.   DOI   ScienceOn
38 Tallquist, M. D. and P. Soriano. 2000. Epiblast-restricted Cre expression in MORE mice: A tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 26:113-115.   DOI   ScienceOn
39 Tarkowski, A. K., A. Witkowska and J. Opas. 1977. Development of cytochalasin B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. J. Embryol. Exp. Morph. 41:47-64.
40 Wu, S., G. Ying, Q. Wu and M. R. Capecchi. 2007. Toward simpler and faster genome-wide mutagenesis in mice. Nat. Genet. 39:922-930.   DOI   ScienceOn
41 Yu, H-M., B. Liu, S-Y. Chiu, F. Costantini and W. Hsu. 2005. Development of a unique system for spatiotemporal and lineage-specific gene expression in mice. Proc. Natl. Acad. Sci. USA. 102:8615-8620.   DOI   ScienceOn