Inhibition of Oligomycin Biosynthesis by olmA5 Gene Knock-out in Streptomyces avermitilis

Streptomyces avermitilis에서 olmA5 Gene의 Knock-out에 의한 Oligomycin 합성 억제

  • Kang, Hyun-Woo (Department of Molecular Science and Technology, Ajou University) ;
  • Ryu, Yeon-Woo (Department of Molecular Science and Technology, Ajou University)
  • 강현우 (아주대학교 분자과학기술학과) ;
  • 유연우 (아주대학교 분자과학기술학과)
  • Published : 2009.06.29

Abstract

Streptomyces is well known for their ability to synthesize enormous varieties of antibiotics as secondary metabolites. Among them, S. avermitilis produces avermectins, a group of antiparasitic agents used in human and veterinary medicine. However, S. avermitilis also produces oligomycin, which is a potential toxic inhibitor of oxidative phosphorylation in mammalian cells. Therefore, we decided to disrupt oligomycin synthetase gene to prevent co-production of oligomycin in S. avermitilis. To create plasmid for disruption, the smallest gene of oligomycin synthetase gene cluster was obtained by PCR from S. avermitilis chromosome. Then, apramycin resistance gene was inserted in oligomycin synthetase gene for selection. After transformation of this plasmid, oligomycin synthetase gene (olmA5) in the chromosome was displaced with disruption cassette on the plasmid via homologous recombination. As a result of this gene replacement, we obtained mutants (olmA5::apra) that no longer makes the toxic oligomycin. And the mutants confirmed by PCR and HPLC analysis. However, showed no increasement of avermectin production in the mutant was observed.

방선균은 다양한 생리활성 물질을 이차대사산물로 생산하는 산업적으로 매우 유용한 미생물이다. 이에 따라 많은 연구진들이 방선균에 대한 분자생물학적 연구와 산업적 이용에 대한 연구들을 수행하고 있다. 방선균 중에서도 S. avermitilis는 강력한 구충효과가 있는 avermectin을 생산하지만, 또한 포유동물 세포의 미토콘드리아에서 산화적 인산화반응을 억제하는 oligomycin도 함께 생성된다. 따라서 S. avermitilis에서 oligomycin의 생성을 제거시키기 위하여 oligomycin synthetase gene을 disruption 시키기 위한 연구를 수행하였다. 이를 위하여 S. avermitilis로부터 cloning 한 oligomycin synthetase gene (olmA5)의 중앙부분에 apramycin resistance gene을 끼워 넣어 integration vector로 구축한 후에 S. avermitilis의 chromosomal DNA와의 homologous recombination에 의하여 olmA5 gene의 disruption을 유도하였다. Disruption mutants (olmA5::apra)는 PCR을 통해 olmA5 gene의 위치에 apramycin resistance gene이 존재하는 것으로 확인하였고, 또한 HPLC 분석을 통해 oligomycin 생합성이 완전히 제거된 것임을 확인하였다. 그러나 disruption mutant (olmA5::apra)를 이용하여 avermectin 만을 생산할 수 있었으나, avermectin의 생산량에는 거의 변화가 없었다. 이러한 mutants는 산업적으로 avermectin을 생산하기 위한 균주 개량의 훌륭한 source가 될 수 있을 것이다.

Keywords

References

  1. Burg, R. W., B. M. Miller, and E. E. Baker (1979), Avennectins, new family of potent anthε1mintic agents: producing organism and fennentation. Antimicrob. Agents Chemother. 15(3), 361-367 https://doi.org/10.1128/AAC.15.3.361
  2. Pinna, L. A., M. Lorini, and N. Siliprandi (1967), Effect of oligomycin and succinate on mitochondrial metabolism of adenine nucleotides. Biochim. Biophys. Acta 143(1), 18-25 https://doi.org/10.1016/0005-2728(67)90105-3
  3. Huang, L., G. A. Schonberg, R. L. Monaghan, K. Jakubas, S. S. Pong, O. D. Hensens, R. W. Berg, D. A. Ostlind, J. Conroy, and E. O. Stapley (1984), Discovery, production and purification of the $Na^+$, $K^+$ activated A TPase inhibitor, L-681, 110 from the fennentation broth of Streptomyces sp. MA-5038. J. Antibiot. (Tokyo) 37(9), 970-975 https://doi.org/10.7164/antibiotics.37.970
  4. Omura, S., H. Ikeda, J. Ishikawa, A, Hanamoto, C. Takahashi, M. Shinose,Y. Takahashi, H. Horikawa, H. Nakazawa, T. Osonoe, et al. (2001) Genome sequence of an industrial microorganism Stretomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. U.S.A. 98(21), 12215-12220 https://doi.org/10.1073/pnas.211433198
  5. MacNeil, D. J. (1992), Analysis of Streptomyces avermitilis genes required for avennectin biosynthesis utilizing a novel integration vector. Gene 111(1), 61-68 https://doi.org/10.1016/0378-1119(92)90603-M
  6. Gust, B., T. Kieser, and K F. Chater (2002), $REDlRECT^c$ technology : PCR-targeting system in Streptomyces coelicolor. The John Innes Foundation, Norwich, United Kingdom
  7. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner (1992), Plasmid cloning vectors for the conjuga1 transfer of DNA from Escherichia coli to Streptomyces spp. Gene, 1992. 116(1), 43-49 https://doi.org/10.1016/0378-1119(92)90627-2
  8. Hwang, Y. S., J. Y. Lee, E. S. Kim, and C. Y. Choi (2001), Optimization of transfonnation procedures in avennectin high-producing Stretomyces avermitilis. Biotechnol. Lett. 23, 457-462 https://doi.org/10.1023/A:1010377219368
  9. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood (2000), Practical Streptomyces Genetics. The John Innes Foundation, Norwich, United Kingdom
  10. Hwang, Y. S., E. S. Kim, S. Biro, and C. Y. Choi (2003), Cloning and analysis of a DNA fragment stimulating avennectin production in various Stretomyces avermitilis strains. Appl. Environ. Microbiol. 69(2), 1263-1269 https://doi.org/10.1128/AEM.69.2.1263-1269.2003
  11. Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Burton, H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Ward, and H. Schremp (1985), Genetic manipulation of Streptmyces. A laboratory manual. The John Innes Foundation, Norwich, UK
  12. Tomich, P. K. (1988), Streptomyces cloning: useful recombinant DNA systems and a sUlllffiation of cloned genes. Antimicrob. Agents Chemother. 32(10), 1465-1471 https://doi.org/10.1128/AAC.32.10.1465
  13. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura (2003) Complete genome sequence and comparative analysis of ilie industria1 microorganism Streptomyces avermitilis. Nat Biotechnol. 21(5), 526-531 https://doi.org/10.1038/nbt820
  14. Flett, F., V. Mersinias, and C. O. Smiili (1997), High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to meiliyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155(2), 223-229 https://doi.org/10.1111/j.1574-6968.1997.tb13882.x
  15. Mazodier, P., R. Petter, and C. Thompson (1989), Intergeneric conjugation between Escherichia coli and Streptomyces species. J. Bacteriol 171(6), 3583-3585 https://doi.org/10.1128/jb.171.6.3583-3585.1989
  16. MacNeil, D. J. (1988), Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J. Bacteriol, 170(12), 5607-5612 https://doi.org/10.1128/jb.170.12.5607-5612.1988
  17. Kwak, J., H. Jiang, and K. E. Kendrick (2002), Transfonnation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol. Lett. 209(2), 243-248 https://doi.org/10.1111/j.1574-6968.2002.tb11138.x
  18. Van Dessel, W., L, Van mellaert, N. Geukens, and J. Anne (2003), Improved PCR-based method for the direct screening of Streptomyces transformants. J. Microbiol. Method, 53(3), 401-403 https://doi.org/10.1016/S0167-7012(02)00235-X
  19. Yong, J. H. and W. H. Byeon (2005), Altemative production of avennectin components in Streptomyces avermitilis by gene replacement. J. Microbiol. 4 (3), 277-284
  20. Ikeda, H., Y. Takada, C. H. Pang, H. Tanaka, and S. Omura (1993), Transposon mutagenes is by Tn4560 and applications wiili avennectin-producing Streptomyces avermitilis. J. Bacteriol. 175(7), 2077-2082
  21. Cherepanov, P. P. and W. Wackemagel (1995), Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance detenninant. Gene 158(1), 9-14 https://doi.org/10.1016/0378-1119(95)00193-A