• Title/Summary/Keyword: kirchhoff plate

Search Result 90, Processing Time 0.025 seconds

An Approximate Method for the Buckling Analysis of a Composite Lattice Rectangular Plate

  • Kim, Yongha;Kim, Pyunghwa;Kim, Hiyeop;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.450-466
    • /
    • 2017
  • This paper defines the modified effective membrane stiffness, bending stiffness considering the directionally dependent mechanical properties and mode shape function of a composite lattice rectangular plate, which is assumed to be a Kirchhoff-Love plate. It subsequently presents an approximate method of conducting a buckling analysis of the composite lattice rectangular plate with various boundary conditions under uniform compression using the Ritz method. This method considers the coupled buckling mode as well as the global and local buckling modes. The validity of the present method is verified by comparing the results of the finite element analysis. In addition, this paper performs a parametric analysis to investigate the effects of the design parameters on the critical load and buckling mode shape of the composite lattice rectangular plate based on the present method. The results allow a database to be obtained on the buckling characteristics of composite lattice rectangular plates. Consequently, it is concluded that the present method which facilitates the calculation of the critical load and buckling mode shape according to the design parameters as well as the parametric analysis are very useful not only because of their structural design but also because of the buckling analysis of composite lattice structures.

Buckling of rectangular plates with mixed edge supports

  • Xiang, Y.;Su, G.H.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.401-416
    • /
    • 2002
  • This paper presents a domain decomposition method for buckling analysis of rectangular Kirchhoff plates subjected to uniaxial inplane load and with mixed edge support conditions. A plate is decomposed into two rectangular subdomains along the change of the discontinuous support conditions. The automated Ritz method is employed to derive the governing eigenvalue equation for the plate system. Compatibility conditions are imposed for transverse displacement and slope along the interface of the two subdomains by modifying the Ritz trial functions. The resulting Ritz function ensures that the transverse displacement and slope are continuous along the entire interface of the two subdomains. The validity and accuracy of the proposed method are verified with convergence and comparison studies. Buckling results are presented for several selected rectangular plates with various combination of mixed edge support conditions.

Rotation-Free Plate Element Based on the Natural Element Method (자연요소법에 기초한 회전자유도가 없는 평판요소)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Lee, Hong-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.513-518
    • /
    • 2007
  • A polygon-wise constant curvature natural element approximation is presented in this paper for the numerical implementation of the abstract Kirchhoff plate model. The strict continuity requirement in the displacement field is relaxed by converting the area integral of the curvatures into the boundary integral along the Voronoi boundary. Curvatures and bending moments are assumed to be constant within each Voronoi polygon, and the Voronoi-polygon-wise constant curvatures are derived in a selective manner for the sake of the imposition of essential boundary conditions. The numerical results illustrating the proposed method are also given.

  • PDF

A Solution for Green's Function of Orthotropic Plate (직교이방성 평판의 Green 함수에 대한 새로운 해)

  • Yang, Kyeong-Jin;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.365-372
    • /
    • 2007
  • Revisited in this paper are Green's functions for unit concentrated forces in an infinite orthotropic Kirchhoff plate. Instead of obtaining Green's functions expressed in explicit forms in terms of Barnett-Lothe tensors and their associated tensors in cylindrical or dual coordinates systems, presented here are Green's functions expressed in two quasi-harmonic functions in a Cartesian coordinates system. These functions could be applied to thin plate problems regardless of whether the plate is homogeneous or inhomogeneous in the thickness direction. With a composite variable defined as $z=x_1+ipx_2$ which is adopted under the necessity of expressing the Green's functions in terms of two quasi-harmonic functions in a Cartesian coordinates system Stroh-like formalism for orthotropic Kirchhoffplates is evolved. Using some identities of logarithmic and arctangent functions given in this paper, the Green's functions are presented in terms of two quasi-harmonic functions. These forms of Green's functions are favorable to obtain the Newtonian potentials associated with defect problems. Thus, the defects in the orthotropic plate may be easily analyzed by way of the Green's function method.

Determination of the Vlasov foundation parameters -quadratic variation of elasticity modulus- using FE analysis

  • Celik, Mecit;Omurtag, Mehmet H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.619-637
    • /
    • 2005
  • The objective of this research was to determine the Vlasov soil parameters for quadratically varying elasticity modulus $E_s$(z) of the compressible soil continuum and discuss the interaction affect between two close plates. Interaction problem carried on for uniformly distributed load carrying plates. Plate region was simulated by Kirchhoff plate theory based (mixed or displacement type) 2D elements and the foundation continuum was simulated by displacement type 2D elements. At the contact region, plate and foundation elements were geometrically coupled with each other. In this study the necessary formulas for the Vlasov parameters were derived when Young's modulus of the soil continuum was varying as a quadratic function of z-coordinate through the depth of the foundation. In the examples, first the elements and the iterative FE algorithm was verified and later the results of quadratic variation of $E_s$(z) were compared with the previous examples in order to discuss the general behavior. As a final example two plates close to each other resting on elastic foundation were handled to see their interaction influences on the Vlasov foundation parameters. Original examples were solved using both mixed and displacement type plate elements in order to confirm the results.

A Study on the Analysis toy Perforated Plate with Irregular Section (불규칙 단면을 갖는 유공 탄성 평판의 해석에 관한 연구)

  • 이성용;장명호;김재열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.34-41
    • /
    • 1999
  • This paper is focused on numerical analysis for perforated plate with irregular section based on Kirchhoff's fundamental equations of a circular plate. The dimensions of analysis model are as following; 1) radius:100cm, 2) hole in center:20cm, 3)thickness: l0cm and variable and have a simple support in boundary. The theoretical results are compared with data obtained by the F.2.M analysis. Both data have good agreement with each other.

  • PDF

Torsional Vibration in Axisymmetric Out-of-plane Vibrations of an Annular Mindlin Plate (환상 민들린 평판의 축대칭 면외 진동에서의 비틀림 진동)

  • Kim, Chang-Boo;Lim, Jung-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.13-17
    • /
    • 2010
  • This presentation examines the characteristics of torsional vibration in axisymmetric out-of-plane vibrations of an annular Mindin plate. The out-of-plane vibration of circular or annular plates have been investigated since a long years ago by many researchers. When the classical Kirchhoff plate theory neglecting the effect of transverse shear deformation is applied to a thick plate, its out-of-plane natural frequencies are much different from reality. And so, since Minlin presented a plate theory considering the effect of rotary inertia and transverse shear deformation, many researches for the out-of-plane natural vibration of circular or annular Mindin plates have been performed. But almost all researchers missed the torsional vibration due to transverse shear deformation in axisymmetric out-of-plane vibrations of the circular or annular Mindin plate. Therefore, in this presentation, we verify the existence of torsional vibration of an annular plate and present the natural frequencies of an annular plate with free outer boundary surface.

  • PDF

Axisymmetric bending of a circular plate with stiff edge on a soft FGM layer

  • Volkov, Sergey S.;Litvinenko, Alexander N.;Aizikovich, Sergey M.;Wang, Yun-Che;Vasiliev, Andrey S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.227-241
    • /
    • 2016
  • A circular plate with constant thickness, finite radius and stiff edge lying on an elastic halfspace is considered. The half-space consists of a soft functionally graded (FGM) layer with arbitrary varying elastic properties and a homogeneous elastic substrate. The plate bends under the action of arbitrary axisymmetric distributed load and response from the elastic half-space. A semi-analytical solution for the problem effective in whole range of geometric (relative layer thickness) and mechanical (elastic properties of coating and substrate, stiffness of the plate) properties is constructed using the bilateral asymptotic method (Aizikovich et al. 2009). Approximated analytical expressions for the contact stresses and deflections of the plate are provided. Numerical results showing the qualitative dependence of the solution from the initial parameters of the problem are obtained with high precision.

Energetics of In-plane Motions in Coupled Plate Structures

  • Park, Young-Ho;Park, Chang Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.428-435
    • /
    • 2020
  • Energy flow analysis (EFA) has been used to predict the frequency-averaged vibrational responses of built-up structures at high frequencies. In this study, the frequency-averaged exact energetics of the in-plane motions of the plate were derived for the first time by solving coupled partial differential equations. To verify the EFA for the in-plane waves of the plate, numerical analyses were performed on various coupled plate structures. The prediction results of the EFA for coupled plate structures were shown to be accurate approximations of the frequency-averaged exact energetics, which were obtained from classical displacement solutions. The accuracy of the results predicted via the EFA increased with an increase in the modal density, regardless of various structural parameters. Therefore, EFA is an effective technique for predicting the frequency-averaged vibrational responses of built-up structures in the high frequency range.

UTD-Supplemented Mode-matching Method Analysis of High-Frequency Wave Coupling into Large Parallel Plate Waveguides (모스정합을 결합한 UTD에 의한 큰 평행도파관의 고주파간섭 해석)

  • 권도훈;선영식;명노훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.48-53
    • /
    • 1994
  • The problem of a plane wave impinging upon a semi-infinite paralle-plate waveguide is investigated. The interior fields can be analyzed by converting the initial field into vaveguide modes. Kirchhoff approximation is usually made at the waveguide aperture in the literature. In this paper, a modified approximation is made using the Uniform Gemetrical Theory of Diffraction(UTD). Numerical results show excellent agreement between UTD-supplemented mode-matching solution and UTD solution.

  • PDF